Programmes After Market Services NHE–8/9 Series Transceivers

Chapter 3 System Module

CONTENTS

Pa	ge No
Overview	3 – 5
Modes of Operation	3 – 5
Circuit Description Summary	3-6
Power Distribution	3 – 7
Baseband Module	3 – 7
Technical Specifications	3 – 8
Functional Description	3 – 23
Keyboard Interface	3 – 38
Keyboard and Display Light	3 – 39
Audio Control	3 – 39
Internal Audio	3 - 40
External Audio	3 – 41
RFI2, N450 Operation	3 – 45
SIM Interface	3 - 46
RF Module	3 – 51
Technical Summary	3 – 51
External Signals and Connections	3 – 51
Main Technical Specifications	3 – 51
Functional Description	3 – 54
Receiver Characteristics	3 – 56
Transmitter Characteristics	3 - 60
Synthesizers	3 - 63
Connections	3-64
Antenna	3 – 64
Antenna selection switch	3 – 64
Parts List	3 – 65
System Module – GJ3_09	3 – 65
System Module – GJ3_10	3 – 79

List of Figures

Page No

Figure 1.	Block Diagram – BB/RF Modules	3–6
Figure 2.	Power Distribution Diagram.	3–23
Figure 3.	Charge Switch Circuit Diagram	3–24
Figure 4.	Power up sequence	3–29
Figure 5.	Flash Loading acknowledgement procedure	3–35
Figure 6.	XMIC Bridge Implementation	3–42
Figure 7.	Power distribution diagram	3–52
Figure 8.	RF Block Diagram	3–54

Note: In printed manuals all A3 drawings are located at the back of the binder.

Schematics/Layouts (GJ3_09)

Figure 9	Component Layout Diagram –Top	3–A1
Figure 10	Component Layout Diagram – Bottom	3–A2
Figure 11	SYSTEM Block	3–A3
Figure 12	RX/TX Block	3–A4
Figure 13	RX	3–A5
Figure 14	ΤΧ	3–A6
Figure 15	Baseband	3–A7
Figure 16	Audio	3–A8
Figure 17	CPU	3–A9
Figure 18	DSP Memory Blocks	3–A10
Figure 19	Keyboard /Display interface	3–A11
Figure 20	MCU memory Block	3–A12
Figure 21	Power Supply & Charging	3–A13
Figure 22	BB/RF Analog Interface	3–A14
Figure 23	System Connector	3–A15
Schemati	cs/Layouts (GJ3_10)	
Figure 24	Component Layout Top	3–A16
Figure 25	Component Layout Bottom	3–A17
Figure 26	System Block	3–A18
Figure 27	RX/TX Block	3–A19
Figure 28	RX	3–A20
Figure 29	ΤΧ	3–A21
Figure 30	Baseband	3–A22
Figure 31	Audio	3–A23
Figure 32	CPU	3–A24
Figure 33	DSP	3–A25
Figure 34	Keyboard / Display Interface	3–A26
Figure 35	MCU	3–A27
Figure 36	Power Supply / Charging	3–A28
Figure 37	BB / RF Analog Interface	3–A29
Figure 38	System Connector	3–A30

[This page intentionally left blank]

System Module

Overview

The nhe–8/9 is a radio transceiver unit for the pan–European GSM network. It is a GSM phase 1 power class 4 transceiver providing 11 power levels with a maximum output power of 2 W.

The transceiver consists of a Radio module (GJ3), UIF-module (GU9) and assembly parts.

The plug-in (small size) SIM (Subscriber Identity Module) card is located inside the phone.

Modes of Operation

There are four different operation modes

- power off mode
- idle mode
- active mode
- local mode

In the *power off mode* only the circuits needed for power up are supplied.

In the *idle mode* circuits are in reset, powered down and clocks are stopped as long as possible.

In the *active mode* all the circuits are supplied with power although some parts might be in the idle state part of the time.

The *local mode* is used for alignment and testing.

Circuit Description Summary

The transceiver electronics consists of the Radio Module (RF + BB blocks), the UI-module and the display module. The UI-module is connected to the Radio Module with a connector and display module is connected to UI-module by solder joint. BB blocks and RF blocks are interconnected with PCB wiring. The Transceiver is connected to accessories via a bottom system connector with charging and accessory control.

The BB blocks provide the MCU and DSP environments. Logic control IC. memories, audio processing and RF control hardware (RFI2). On board power supply circuitry delivers operating voltages for BB blocks. RF blocks have regulators of their own.

The general purpose microcontroller, Hitachi H8/3001, communicates with the DSP, memories and Logic control IC with an 8-bit data bus.

The RF block is designed for a handportable phone which operates in the GSM system. The purpose of the RF block is to receive and demodulate the radio frequency signal from the base station and to transmit a modulated RF signal to the base station.

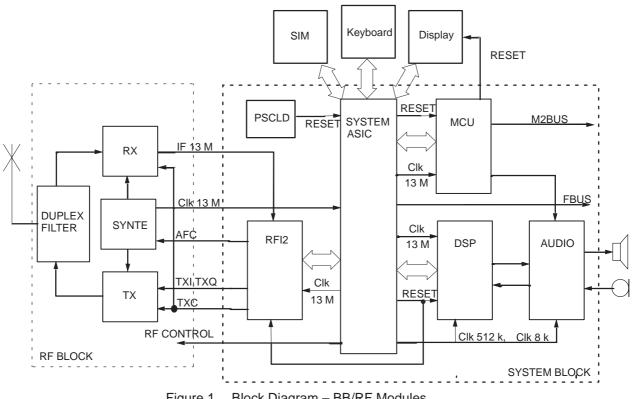


Figure 1. Block Diagram – BB/RF Modules

Power Distribution

The power supply is based on the ASIC circuit PSCLD. The chip consists of regulators and control circuits providing functions like power up, reset and watchdog functions. External buffering is required to provide more current.

The MCU and the PSCLD circuits control charging together, detection being carried out by the PSCLD and higher level intelligent control by the MCU. Charger voltages as well as temperature and size of the battery are measured by internal ADC of MCU or RFI (depending on the state of the phone). MCU measures battery voltage via DSP by means of RFI2 internal ADC.

Baseband Module

The GJ3 module is used in GSM products. The baseband is implemented using DCT2 core technology. The baseband is built around one DSP, System ASIC and the MCU. The DSP performs all speech and GSM related signal processing tasks. The baseband power supply is 3V except for the A/D and D/A converters that are the interface to the RF section. The A/D converters used for battery and accessory detection are integrated into the same device as the signal processing converters.

The audio codec is a separate device which is connected to both the DSP and the MCU. The audio codec support the internal and external microphone/earpiece functions. External audio is connected in a dual ended fashion to improve audio guality together with accessories.

The baseband implementation support a 32.768 kHz sleep clock function for power saving. The 32.768 kHz clock is used for timing purposes during inactive periods between paging blocks. This arrangement allows the reference clock, derived from RF to be switched off.

The baseband clock reference is derived from the RF section and the reference frequency is 13 MHz. A low level clipped sinusoidal wave form is fed to the ASIC which acts as the clock distribution circuit. The DSP is running at 39 MHz using an internal PLL. The clock frequency supplied to the DSP is 13 MHz. The MCU bus frequency is the same as the input frequency. The system ASIC provides both 13 MHz and 6.5 MHz as alternative frequencies. The MCU clock frequency is programmable by the MCU. The nhe–8/9 baseband uses 13 MHz as the MCU operating frequency. The RF A/D, D/A converters are operated using the 13 MHz clock supplied from the system ASIC

The power supply and charging section supplies Lithium Ion and NiMH type of battery technology. The battery charging unit is designed to accept constant current type of chargers, that are approved by NMP.

The power supply IC, contains four different regulators. The output voltage from two of the regulators are 3.15V nominal. A third regulator controls an external boost transistor for a 3.15V 'high' current supply. The last regulator supplies the SIM card voltage, which is 4.9V.

Technical Specifications

The Baseband in nhe-8/9 Operates in the following Modes

Active, as during a call or when baseband circuitry is operating

Sleep, in this mode the clock to the baseband is stopped and timing is kept by the 32.768 kHz oscillator. All Baseband circuits are powered

Acting dead, in this mode the battery is charged but only necessary functions for charging are running

Power off, in this mode all baseband circuits are powered off. The regulator IC N300 is powered

External Signals and Connections

Connector Name	Code	Notes	Specifications / Ratings
System Connector	5469007	X100	
SIM Connector	5409033	X102	

Pin	Name	Parar	neter	Min	Тур	Max	Unit	Remark
1, 7,	GND	Charger & Sys-			0	0	V	Measuring Reference
18, 20		tem G	round		800	1500	mA	Max Value for Charger Peaks
2	V_OUT	Accesso put S		3.40		9.3	V	Output Current 50 mA.
3	XMIC ID	External Micro- phone Input			8	50	mV	The maximum value corre- sponds to 0 dBm network level with input amplifier gain set to 20 dB. Typical value is maximum value -16 dB.
		End	less					No Accessory
		IR L	_ink	2.22	2.39	2.56	V	Infra Red Link connected
		Hea	dset	1.7	1.9	2.05	V	Headset Adapter Con- nected
		Compa	act HF	1.15	1.3	1.4	V	Compact HF Connected
4	EXT_RF	External		0		0.5	V	External RF in use
		troli	nput	2.4		3.2	V	Internal antenna in use
5	ТΧ	FBUS t	transmit	0		0.5		Accessory FBUS transmit signal, Serial data bus. The signal has a pull–up inside
				2.4		3.2		the ASIC. Baud rate 9.6 – 115.2kBit / s.
6	MBUS	Serial	"0"	0		0.5	V	General Purpose Control
		Control Bus	"1"	2.4		3.2	V	and Test Control Bus

Table 2. System Connector X100

Pin Name Parameter Min Max Unit Remark Тур 8 SGND 0 0 V Measuring Reference for Signal ground Audio signals. 47 ohm to Audio Ground XEAR **External Speaker** 0 32 500 mV Connected to Audio Codec 9 Inverted Output. Typical level corresponds to -16 dBmO network level with volume control in nominal position 8db below maximum. Maximum 0 dBm0 max. volume codec gain -6dB. MUTE ON 0 0.5 V HF Speaker Mute OFF 1 1.5 1.7 V **HF** Speaker Active 10 HOOK Acces-OFF 0.5 V HOOK OFF sory ON V 2.4 3.2 HOOK ON Hook Baseband has 4.7 kohm Signal Pull-up **FBUS** receive V 11 RX 0 0.5 Accessory FBUS receive signal, Serial data bus. Baud rate 9.6 - 115.2kBit / V s. 2.4 3.2 Phone has a pull-up resistor. 13 BGND GND 0 0 0 V Battery GND V 14 **BTEMP** Battery Temper-0 Also used for Vibration 0 3.3 Alert ature 0 V Used for SIM Card Detec-15 BSI **Battery Size** 0 3.3 tion V 16 VBatt **Battery Voltage** 5.3 6 9.3 Main Power Supply V 12, V IN Charger supply 9.8 10.3 10.8 Fast Charger ACH-6 (780 17, Voltage mA) 12 14 16 V 19 Standard Charger ACH-8 (265mA)

Table 2.	System Connector X100	(continued)
----------	-----------------------	-------------

System Module

Pin	Name	Parameter	Logic Level	Min	Тур	Мах	Unit	Remark
1	GND, C5	GND		0		0	V	Digital GND
2,6	VSIM, C1, C6	SIM Supply Voltage		4.8	4.9	5.0	V	T _r , max. 2V/us max 200 us. T _f max. 200 us. Note1.
3	SDATA,	SIM DATA	"1"	0.7xVSIM		VSIM	V	
	C7	VI	"0"	0		0.8		
				0.7xVSIM				
		VO	"1"	0		VSIM		
			"0"			0.4		
4	SRES, C2	SIM Reset	"1"	VSIM-0.7		VSIM	V	
			"0"	0		0.6		
5	CLK, C3	SIM Clock	"1"	0.7xVSIM		VSIM	V	Clock fre-
			"0"	0		0.5		quency mini- mum 1 MHz if clock stopping not allowed

Note 1. VSIM supply voltage may be selected to 3 V to meet 3V SIM card specifications. (Voltage range 3.1 to 3.3 V). The values in NO TAG will be different, values only valid for "5 volt SIM card".

PAMS

Technical Documentation

NHE-8/9

System Module

4	GND	Ground			0		V	
5	VL	Display Sup- ply		3.0		3.2	V	
6	SYSRE-	Reset	"1"	2.4		3.2	V	Edge sensi-
	SETX		"0"	0		0.6	V	tive
7	GND	Ground			0		V	
8	KEYLIGHT	Keboard Light	"1" "0"	2.8 0		3.2 0.2	V	Max 1 mA can be drawn from N300 (PSCLD)
9	LCDLIGHT	Display Light	"1" "0"	2.8 0		3.3 0.2	V	Max 1 mA can be drawn from N300 (PSCLD)
10	BUZZER	PWM signal- Buzzer con- trol		0		3.2	V	
11	GND	Ground			0		V	
12	GENSCLK	Serial clock	"1"	2.4		3.2	V	1.083 MHz
			"0"	0		0.6	V	
13	GENSD	Serial data	"1"	2.4		3.2	V	
			"0"	0		0.6	V	
14	LCDENX	LCD enable	"1"	2.4		3.2	V	
			"0"	0		0.6	V	
15	VBatt	Battery Sup- ply		5.3		9.3	V	
18	XPWRON	Power ON/ OFF	"1"	5.3		9.3	V	Pulled up to Vbatt inside PSCLD.
			"0"	0		0.4	V	

Table 4. User Interface Connector X101

NHE--8/9

System Module

		1					-	,
19	EARN	Earphone		0	14	220	mV	Connected to Audio Co- dec Inverted Output. Typi- cal level cor- responds to -16 dBmO network level with volume control giv- ing nominal RLR (=+2dB) 8 db below max. Max level is OdBmO with max volume (codec gain -11 db)
20	EARP	Earphone		0	14	220	mV	Connected to Audio Co- dec non In- verted Out- put. Typical level corre- sponds to -16 dBmO network level with volume control giv- ing nominal RLR (=+2dB) 8 db below max. Max level is OdBmO with max volume (codec gain -11 db)
21	ROW(0)	ROW(0) In- put	"1" "0"	2.4 0		3.2 0.6	V	
22	ROW(1)	ROW(1) In-	"1"	2.4		3.2	V	
		put	"0"	0		0.6		
23	ROW(2)	ROW(2) In-	"1"	2.4		3.2	V	
		put	"0"	0		0.6		
24	ROW(3)	ROW(3) In-	"1"	2.4		3.2	V	
		put	"0"	0		0.6		
25	ROW(4)	ROW(4) In-	"1"	2.4		3.2	V	
		put	"0"	0		0.6		

Table 4. User Interface Connector X101 (continued)

PAMS

Technical Documentation

	lč	able 4. User II	nterrace	Connecto	or X101 (continue	a)	
26	ROW(5)	ROW(5) In- put	"1"	2.4		3.2	V	Also used for data control
		put	"0"	0		0.6		for LCD
27	COL(0)	COL(0) Out-	"1"	2.6		3.2	V	
		put	"0"	0		0.4		
28	COL(1)	COL(1) Out-	"1"	2.6		3.2	V	
		put	"0"	0		0.4		
29	COL(2)	COL(2) Out-	"1"	2.6		3.2	V	
		put	"0"	0		0.4		
30	COL(3)	COL(3) Out-	"1"	2.6		3.2	V	
		put	"0"	0		0.4		
31	GND	Ground			0		V	

Table 4.	User Interface Connector X101	(continued)
		(

Table 5. DAI interface connecting test pads

Pin	Name	Parameter	Logic Level	Min	Тур	Max	Unit	Remark
1	CODECB(0)	Audio codec clock	"1" "0"	2.4 0		3.2 0.6	V	Audio Codec clock for DAI measure- ments; test pin J316
2	CODECB(4)	DSP Serial	"1"	2.4		3.2	V	Serial PCM data
		Data Receive	"0"	0		0.6		receive for DAI measurements; test pin J317
3	CODECB(5)	DSP Serial	"1"	2.4		3.2	V	Serial PCM data
		Data Trans- mit	"0"	0		0.6		transmit for DAI measurements; test pin J318
4	CODECB(1)	Audio codec	"1"	2.4		3.2	V	Audio Codec frame synchronisation for DAi measure- ments; test pin J319
		sync	"0"	0		0.6		
5	VL	Digital Supply		3.0		3.3	V	test pin J320
6	GND	GND		0		0.2	V	test pin J321

Internal Signals and Connections

Table 6. SYS_CONN Block Connections

Name of Signal or Bus	Туре	Notes	References
XEAR/MUTE	IN	External earphone input from AU- DIO block to System connector	
SGND	OUT	Used as reference for external audio	
XMIC/ID	OUT	External Microphone output from System connector to AUDIO block	
EXT_RF	OUT	External RF control output from System Connector to CCPU block	
BTYPE	OUT	Battery type	
BTEMP	OUT	Battery temperature	
НООК	OUT	Accessory Interrupt	
CHARGER+	OUT	Charger positive contact	
GND		Ground	
VBATT	IN	Battery Supply Input to Power Block	
MBUS	I/O	Serial Data Bus to MCU	
V_OUT	OUT	External Accessory supply voltage	
ТХ	OUT	Accessory FBUS digital data output	
RX	IN	Accessory FBUS digital data input	
RF	I/O	External RF connector signal	

Technical Documentation

Name of Signal or Bus	Туре	Notes	References
SGND	OUT	Negative Output From N200 (Co- dec) Pin 2 used as reference for ex- ternal audio	
CODECB(5:0)	IN/OUT	Serial Digital Bus for Speech trans- mission to/from CCPU Block	
SCONB(5:0)	IN/OUT	Serial Control Bus from CCPU Block	
XMIC	IN	External Microphone Input from System Connector	
MICP	IN	Positive Microphone input from in- ternal Microphone	
MICN	IN	Negative Microphone input from in- ternal Microphone	
XEAR	OUT	Positive Output from N200 (CO- DEC)	
EARN	OUT	Negative Earpiece output signal from N200 (Codec)	
EARP	OUT	Positive Earpiece output signal from N200 (Codec)	
BUZZER	OUT	Buzzer Output to User Interface Connector	
ACCDET	OUT	LP Filtered Signal from XMIC input for Accessory Detection. Connected to CCPU and RFI Block	

Table 7.	Audio	Block	Connections
			•••••••

Table 8. Keyboard Block Connections

Name of Signal or Bus Type		Notes	References
KEYB(9:0)	IN/OUT	Keyboard input/output	
PWRONX	OUT	Power on signal to Power Block	
COL(3:0)	OUT	Column Output to Keyboard con- nector X101	
ROW(5:0)	IN	Row inputs from keyboard Connec- tor X101	
PWRX	IN	Power On Signal input from Key- board Connector	Active Low

NHE--8/9

Name of Signal or Bus	Туре	Notes	References
MBUS(2:0)	I/O	Serial Data Bus to MCU	
CODECB(5:0)	CB(5:0) IN/OUT Serial Synchronous Data Bus for DAI and Testing		
MCUP4(7:0)	I/O	MCU Port 4 Bus	
SCONB(5:0)	I/O	Serial Control Bus for Regulator IC Control	
SIMI(5:0)	I/O	SIM Card Signals from CCPU Block	
BSI	IN	Battery Size Signal from System Connector	
BTEMP	IN	Battery Temperature Signal from System Connector	
CHARGER	IN	Charger Supply Input to Power Block	
GND		Ground	
PWRONX	IN	Power On Signal from Keyboard Block	
SLEEPIX	IN	Sleep Control Signal from CCPU	MCUMEMC(6)
VBAT	IN	Battery Supply Input to Power Block	
VBATT	OUT	Battery Voltage to UI module	
VBATT	OUT	Battery Power Supply to RF	VBAT
CHARGE	I/O	Charge Detection Signal to CCPU	
V_OUT	OUT	Accessory Power Supply	
VLCD	OUT	Supply Voltage to LCD and Driver	
VA	OUT	Supply voltage to Audio / analog cir- cuitry.	
VSL	OUT	Supply voltage and sleep mode supply	
VL	OUT	Supply voltage for logic circuitry	
SLEEPOX	OUT	Sleep signal to control RF VCXO	Active Low, VXOENA
PURX	OUT	Power Up Reset to CCPU Block	Active Low
M2BUS	I/O	Serial Control Bus to System Con- nector	
SIMCARD(3:0)	I/O	SIM Card SIgnals to Card Connec- tor X102	
LIGHTC(1:0)	OUT	Display & Keyboard Light Control signals	
ADCONV(5:0)	OUT	BSI, BTEMP, VBAT and VCAR Volt- age to Baseband A/D Converter	

NHE-8/9

System Module

Table 10. CCF	U Block	Connections
---------------	---------	-------------

Name of Signal or Bus	Туре	Notes	References
DSP_DATA(15:0)	I/O	16 Bit DSP Data Bus	
DATA(7:0)	I/O	8 Bit MCU Data Bus	
RFI_DATA(11:0)	I/O	12 Bit RFI2 Data Bus	
MBUS(2:0)	I/O	Serial Data Bus to MCU	
CODECB(5:0)	I/O	DSP and Audio Codec Serial Bus	
ACCES(1:0)	I/O	Accessory FBUS data	
CPUAD(5:0)	IN	Input to MCU A/D Converter	
PURX	IN	Power Up Reset	
RFCLK	IN	System Clock from RF	
RFDAX	IN	Data Available Signal From RFI2	
CHARGE	I/O	Charger Presence Signal	
HEADS	IN	Accessory Interrupt	
RFCGND	IN	Reference Ground for RFCLK	
RFICLK	OUT	13 MHz Clock to RFI2	
DSPINT(3:0)	IN	DSP Interrupt signals	
DSPGENP(3:0)	OUT	DSP General Purpose Outputs	
SCONB(5:0)	OUT/IN	Control Bus for Power Supply IC, Display Driver and Audio Codec	
DSP_ADDR(15:0)	OUT	DSP Address Bus	
MEMC(6:0)	OUT	Chip Select and Memory control sig- nals from MCU	
MCUP4(7:0)	I/O	MCU Port 4 Signals	
SIM(5:0)	I/O	SIM Card SIgnals to Power Block	
DMEMC(3:0)	OUT	DSP Memory Control Signal Bus	
RFO CONT	OUT	External RF output control	
ADDR(23:0)	OUT	MCU Address Bus	
RFCONT(7:0)	OUT	RF and Synthesizer Control Signal Bus	
RFIADC(5:0)	OUT	RFI2 Address and Control signal Bus	
КЕҮВ(9:0)	OUT/IN	Keyboard ROW and Column Sig- nals	

Name of Signal or Bus	Туре	Notes	References
DSPMEMC(3:0)	IN	DSP Memory Control Signals from CCPU Block	
DSP_ADDR(15:0)	IN	16–Bit DSP Address Bus from CCPU Block	
DSP_DATA(15:0)	I/O	16–Bit DSP Data Bus from CCPU Block	

Table 11. DSP_MEM Block Connections

Table 12. MCU_MEM Block Connections

Name of Signal or Bus	Туре	Notes	References
MEMC(6:0)	IN	Memory Control Signals from CCPU Block	
ADR(23:0)	IN	23–Bit MCU Address Bus from CCPU Block	
DATA(7:0)	I/O	8–Bit MCU Data Bus from CCPU Block	

Table 13. RFI Block Connections

Name of Signal or Bus	Туре	Notes	References
RFIDATA(11:0)	I/O	12 Bit Data Bus Between RFI2 and CCPU Block	
DSPINT(3:0)	OUT	Interrupt to CCPU Block	
AUXAD(5:0)	IN	Baseband Measurement A/D Con- verter Signals to RFI2 Block	
RFIADC(5:0)	OUT	4 Bit Address and 2 Bit Control Bus from CCPU Block	
VXOENA	IN	Sleep signal to control RFI2 analog power supply	Active Low, SLEEPOX
VBATT	IN	Battery Supply Voltage from Power Block	
RFICLK	IN	13 MHz clock from CCPU Block	
RFIDAX	OUT	Data Available Signal From RFI2	
RXQ	IN	Input Signal From RF	
RXI	IN	Input signal from RF	
VREF 2.5V	OUT	Reference Voltage to RF	
AFC	OUT	AFC Voltage to RF VCXO	
TXC	OUT	Power Ramp Control Signal to RF	
TXIN	OUT	Negative In Phase Signal to RF	
TXIP	OUT	Positive In Phase Signal to RF	
TXQN	OUT	Negative Quadrature Signal to RF	
TXQP	OUT	Positive Quadrature Signal to RF	
RFIPORT(6:0)	OUT	Parallel Port From RFI Block	

Technical Documentation

Signal name	Fro m	То	Parameter	Min	Typical	Max	Unit	Function			
VBATT	bat-	RF	Voltage	5.3	6.0	9.3	V	Supply voltage for RF			
	tery		Current			150 0	mA				
VXOENA	ASI C	RF reg-	Logic high "1"	2.4	3.15	3.3	V	Synth. regulator ON vcxo voltage ON,			
		ula- tor	Logic low "0"	0		0.5	V	Synth. regulator OFF, VCXO voltage OFF			
			Current			0.5	mA				
			timing inaccuracy			10	us				
RXPWR	ASI C	RF reg-	Logic high "1"	2.4	3.15	3.3	V	RX supply voltage ON			
		ula-	Logic low "0"	0		0.5	V	RX supply voltage OFF			
		tor	Current			0.5	mA				
SYNTHP WR	ASI C	RF	Logic high "1"	2.4	3.15	3.3	V	RF regulators ON			
VVIX		reg- ula- tor	Logic low "0"	0		0.5	V	RF regulators OFF			
			Current			1.0	mA				
TXPWR	PWR ASI C	RF	Logic high "1"	2.4	3.15	3.3	V	TX supply voltage ON			
		reg- ula- tor	Logic low "0"	0		0.5	V	TX supply voltage OFF			
			Current			0.5	mA				
SENA1	ASI	PLL	Logic high "1	2.4	3.15	3.3	V	Dual PLL Enable			
	С		Logic low "0"	0		0.8	V				
			Current			50	uA				
			Load capacitance			10	pF				
SDATA	ASI	PLL	Logic high "1	2.4	3.15	3.3	V	Synthesizer data			
	С	Log	C	С		Logic low "0"	0		0.8	V	
			Load resistance	10			koh m				
			Load capacitance			10	pF				
			Data rate frequency		3.25		MH z				
SCLK	ASI	PLL	Logic high "1	2.4	3.15	3.3	V	Synthesizer clock			
	С		Logic low "0"	0		0.8	V				
			Load impedance	10			koh m				
			Load capacitance			10	pF				
			Data rate frequency		3.25		MH z				

Table 14.	AC and DC	Characteristics	of the	RF-baseband signals
-----------	-----------	-----------------	--------	----------------------------

Signal name	Fro m	То	Parameter	Min	Typical	Max	Unit	Function
ТХР	ASI	RF	Logic high "1"	2.4	3.15	3.3	V	Transmitter power con-
	С		Logic low "0"	0		0.8	V	trol enable
			Load Resistance	50			koh m	
			Load Capacitance			10	pF	
			Timing inaccuracy			1	us	
RFC	VCT CX	ASI C	Frequency		13		MH z	High stability clock sig- nal for the locig circuits
	0		Signal amplitude	0.4	1.0	3.0	Vpp	
			Load Resistance	10			koh m	
			Load Capacitance			5	pF	
PDATA0	RFI 2	LNA LNA	Logic high "1"	2.4	3.15	3.3	V	Nominal front end gain
			Logic low "0"	0		0.8	V	Reduced front end gain
	RFI 2		Current			0.1	mA	Nominal front end gain
PDATA1	RFI		Logic high "1"	2.4	3.15	3.3	V	Not used !
	2		Logic low "0"	0		0.5	V	
			Current			10	uA	
PDATA2	RFI		Logic high "1"	2.4	3.15	3.3	V	Not used !
	2		Logic low "0"	0		0.5	V	
			Current			10	uA	
PDATA3	RFI		Logic high "1"	2.4	3.15	3.3	V	Not used !
	2		Logic low "0"	0		0.5	V	
			Current			10	uA	
PDATA4	RFI		Logic high "1"	2.4	3.15	3.3	V	Not used !
	2		Logic low "0"	0		0.5	V	
			Current			10	uA	
PDATA5	RFI		Logic high "1"	2.4	3.15	3.3	V	Not used !
	2		Logic low "0"	0		0.5	V	
			Current			10	uA	

Technical Documentation

Signal name	Fro m	То	Parameter	Min	Typical	Max	Unit	Function
AFC	RFI	VCT	Voltage	0.26		3.94	V	Automatic frequency
	2	CX O	Resolution	11			bits	control signal for VCTCXO
			Load impedance (dynamic)	10			koh m	
			Noise Voltage			500	uVrm s	1010000 Hz
			Settling time			1	ms	
RXIP / RXIN	CR FRF T	RFI 2	Output level		25	570	mV pp	Differential RX 13 MHz signal to baseband
			Source impedance			300	ohm	
			Load Resistance	10			koh m	
			Load Capacitance			5	pF	
			Phase Imbalance			2	deg	
			Amplitude Imbal- ance			1	dB	
TXIP/ TXIN	RFI 2	CR FRT	Differential voltage swing	2.23	2.40	2.57	Vpp	Differential in–phase TX baseband signal for
			Differential Offset voltage			+-4. 7	mV	the RF modulator
			Diff. Offset voltage temp. dependence			+- 2		
			DC level	2.01 6	2.1	2.40	V	
			Offset voltage			+ 10	mV	
			Source Impedance			50	ohm	
			Load Resistance	16			koh m	
			Load Capacitance			10	pF	
			Resolution	8			bits	
			DNL			+0. 9	LSB	
			INL			+ -1	LSB	
			Group delay mis- match			100	ns	
TXQP/ TXQN	RFI 2	CR FRT	Same spec as for TX	IP / TX	I (IN	1	1	Differential quadrature phase TX baseband signal for the RF modu- lator

Table 14	AC and DC	Characteristics	of the RF-	-baseband signa	is (continued)
----------	-----------	-----------------	------------	-----------------	----------------

Signal	Fro	То	Parameter	Min	Typical	Max	Unit	Function
name	m						•	
TXC	RFI	CR	Voltage Max	3.86		3.94	V	Transmitter power con-
	2	FRT	Voltage Min	0.26		0.34	V	trol, CRFRT gain con- trol
			Vout temperature dependence			10	LSB	
			Source Impedance			50	ohm	
			Input resistance	10			koh m	
			Input capacitance			10	pF	
			Settling Time			10	us	
			Noise level			500	uVrm s	0200kHz
			Resolution	10			bits	
			DNL			+-0. 9	LSB	
			INL			+- 4	LSB	
VREF 2.5	RFI 2	RF	Voltage level		2.493		V	RF reference voltage
RFO_CO	MC	RF	Logic high "1"	2.4		3.3	V	External RF control
NT	U		Logic low "0"	0		0.6	V	
RFOUT	RF	OU T				2	W	External RF signal from/to bottom connec- tor
RFCGND	ASI C	RF						RFC signal ground

Table 14. AC and DC Characteristics of the RF-baseband signals	(continued)
Table 14. Ao ana bo onaraotenstios of the Millionard Signals	(oonanaca)

Functional Description

Power Supply

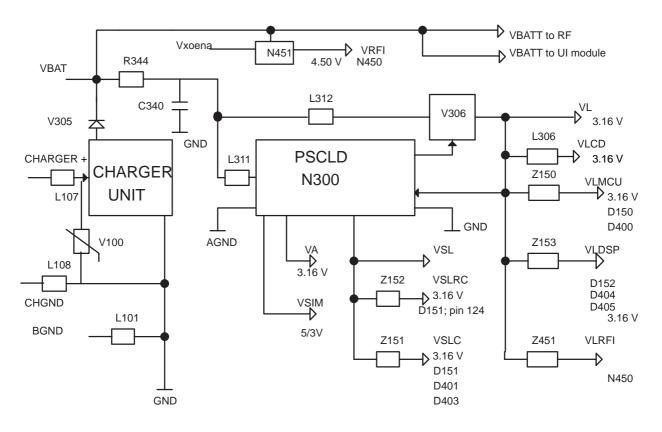


Figure 2. Power Distribution Diagram.

The power supply for the baseband is the main battery. A charger input is used to charge the battery. Two different chargers can be used for charging the battery. A switch mode type fast charger that can deliver 780 mA and a standard charger that can deliver 265 mA. Both chargers are of constant current type.

The baseband has one power supply IC, N300 delivering power to the different parts in the baseband. There are two logic power supply and one analog power supply. The analog power supply VA is used for analog circuits such as audio codec, N200 and microphone bias circuitry. Due to the current consumption and the baseband architecture the digital supply is divided into two parts.

Both digital power supply rails from the N300, PSCLD are used to distribute the power dissipation inside N300, PSCLD. The main logic power supply VL has an external power transistor, V306 to handle the power dissipation that will occur when the battery is fully charged or during charging.

D151, ASIC and the MCU SRAM, D403 are connected to the same logic supply voltage. All other digital circuits are connected to the main digital supply.

Charging Control Switch Functional Description

The charging switch circuit diagram is shown below. The figure is for reference only.

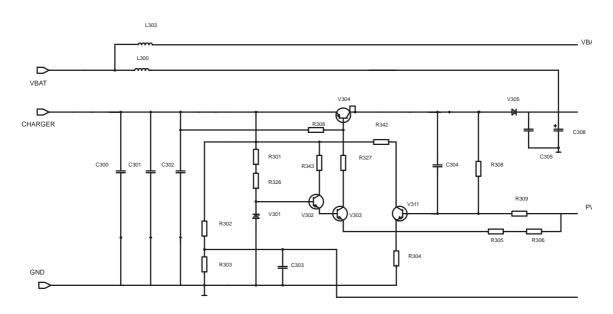


Figure 3. Charge Switch Circuit Diagram

The charging switch transistor V304 controls the charging current from the charger input to the battery. During charging the transistor is forced in saturation and the voltage drop over the transistor is 0.2–0.4V depending upon the current delivered by the charger. Transistor V304 is controlled by the PWM output from N300, via resistors R309, R308 and transistor V311. The output from N300 is of open drain type. When transistor V304 is conducting the output from N300 pin is low. In this case resistors R305 and R306 are connected in parallel with R304. This arrangement increases the base current thru V304 to put it into saturation.

Transistors V304, V302, V303 and V311 forms a simple voltage regulator circuitry. The reference voltage for this circuitry is taken from zener diode V301. The feedback for the regulator is taken from the collector of V304. When the PWM output from N300 is active, low, the feedback voltage is determined by resistors R308 and R309. This arrangement makes the charger control switch circuitry to act as a programmable voltage regulator with two output voltages depending upon the state of the PWM output from N300. When the PWM is inactive, in high impedance state, the feedback voltage is almost the same as on the collector of V304. Due to the connection the voltage on V303 and V311 emitters are the same.

The feedback means that the system regulates the output voltage from V304 in such a way that the base of V303 and V311 are at the same voltage. The voltage on V302 is determined by the V301 zener voltage.

The darlington connection of V303 and V302 service two purposes ; 1 the load on the voltage reference V301 is decreased, 2 the output voltage on V304 is decreased by the VBE voltage on V302 which is a wanted feature. The voltage reduction allows a relative temperature stable zener diode to be used and the output voltage from V304 is at a suitable level when the PWM output from N300 is not active.

The circuitry is self starting which means that an empty battery is initially charged by the regulator circuitry around the charging switch transistor. The battery is charged to a voltage of maximum 4.8V. This charging switch circuitry allows for both NiCd, NiMH and Lithium type of batteries to be used. At the same time it will secure that the battery will not over charge in case one cell is short circuited.

When the PWM output from N300 is active the feedback voltage is changed due to the presence of R308 and R309. When the PWM is active the charging switch regulator voltage is set to 9.3V maximum. This means that even if the voltage on the charger input exceeds 11.5V the battery voltage will not exceed 9.3 V. This protects N300 from over voltage even if the battery was to be detached while charging.

The RC network C304, R308 and R309 also acts as a delay circuitry when switching from one output voltage to an other. This happens when the PWM output from N300 is pulsing. The reason for the delay is to reduce the surge current that will occur when V304 is put into conducting state. Before V304 is put in conducting state there is a significant voltage drop over V304. The energy is stored in capacitors in the charger and these capacitors must first be drained in order to put the charger in constant current mode. This is done by discharging the capacitors into the battery. The delay caused by C304 will reduce the surge current thru V304 to an acceptable value.

R301 and R326 are used to regulate the zener current. During charging with empty battery the zener voltage might drop due to low zener current but this is no problem since the regulator is operating in constant current mode while charging. The zener voltage is more important when the charger voltage is high or in case that the PWM output from N300 is inactive. In this case the charger idle voltage is present at the charger supply pins.

R300 and R327 together with V304 forms a constant current source. The surge current limitation behavior is frequency dependent since L107 is an inductor. The purpose of this circuitry is to reduce the surge current thru V304 when it is put in conducting state. Due to the low resistance value required in L107 this arrangement is not very effective and the RC network R308, R309 and C304 contributes more to the surge current reduction.

V305 is a schottky diode that prevents the battery voltage from reverse biasing V304 when the charger is not connected. The leakage current for V305 is increasing with increasing temperature and the leakage current is passed to ground via R308, V311 and R304. This arrangement prevents V304 from being reversed biased as the leakage current increases at high temperatures.

Components L107, C300, C301, C302 and L108 forms a filter for EMC attenuation. The circuitry reduces the conductive EMC part from entering the charger cable causing an increase in emission as the cable will act as an antenna.

V100 is a 18V transient suppressor. V100 protects the charger input and in particular V304 for over voltage. The cut off voltage is 18V with a maximum surge voltage up to 25V. V100 also protects the input for wrong polarity since the transient suppressor is bipolar.

Power Supply Regulator PSCLD, N300

The power supply regulators are integrated into the same circuit N300. The power supply IC contains three different regulators. The main digital power supply regulator is implemented using an external power transistor V306. The other two regulators are completely integrated into N300.

PSCLD, N300 External Components

N300 performs the required power on timing. The PSCLD, N300 internal power on and reset timing is defined by the external capacitor C330. This capacitor determines the internal reset delay, which is applied when the PSCLD, N300 is initially powered by applying the battery. The baseband power on delay is determined by C311. With a value of 10 nF the power on delay after a power on request has been active is in the range of 50–150 ms. C310 determines the PSCLD, N300 internal oscillator frequency and the minimum power off time when power is switched off.

The sleep control signal from the ASIC, D151 is connected via PSCLD, N300. During normal operation the baseband sleep function is controlled by the ASIC, D151 but since the ASIC is not powered up during the startup phase the sleep signal is controlled by PSCLD, N300 as long as the PURX signal is active, low. This arrangement ensures that the 13 MHz clock provided from RF to the ASIC, D151 is started and stable before the PURX signal is released and the baseband exits reset. When PURX is inactive, high, sleep control signal is controlled by the ASIC D151.

To improve the performance of the analog voltage regulator VA an external capacitor C329 has been added to improve the PSRR.

N300 requires capacitors on the input power supply as well as on the output from each regulator to keep each regulator stable during different load and temperature conditions. C305 and C308 are the input filtering capacitors. Due to EMC precautions a filter using C305, L300 and C308 has been inserted into the supply rail. This filter reduces the high frequency components present at the battery supply from exiting the baseband into the battery pack. The regulator outputs also have filter capacitors for power supply filtering and regulator stability. A set of different capacitors are used to achieve a high bandwith in the suppression filter.

PSCLD, N300 Control Bus

The PSCLD, N300 is connected to the baseband common serial control bus, SCONB(5:0). This bus is a serial control bus from the ASIC, D151 to several devices on the baseband. This bus is used by the MCU to control the operation of N300 and other devices connected to the bus. N300 has two internal 8 bit registers and the PWM register used for charging control. The registers contains information for controlling reset levels, charging HW limits, watchdog timer length and watchdog acknowledge.

The control bus is a three wire bus with chip select for each device on the bus and serial clock and data. From PSCLD, N300 point of view the bus is used as write only to PSCLD. It is not possible to read data from PSCLD, N300 by using this bus.

The MCU can program the HW reset levels when the baseband exits/enters reset. The programmed values remains until PSCLD is powered off, the battery is removed. At initial PSCLD, N300 power on the default reset level is used. The default value is 5.1 V with the default hysteresis of 400 mV. This means that reset is exit at 5.5 V when the PSCLD, N300 is powered for the first time.

The watchdog timer length can be programmed by the MCU using the serial control bus. The default watchdog time is 32 s with a 50 % tolerance. The complete baseband is powered off if the watchdog is not acknowledged within the specified time. The watchdog is running while PSCLD, N300 is powering up the system but PURX is active. This arrangement ensures that if for any reason the battery voltage doesn't increase above the reset level within the watchdog time the system is powered off by the watchdog. This prevents a faulty battery from being charged continuously even if the voltage never exceeds the reset limit. As the time PURX is active is not exactly known, depends upon startup condition, the watchdog is internally acknowledged in PSCLD when PURX is released. This gives the MCU always the same time to respond to the first watchdog acknowledge.

Baseband power off is initiated by the MCU and power off is performed by writing the smallest value to the watchdog timer register. This will power off the baseband within 0.5 ms after the watchdog write operation.

The control bus can also be used to setup the behavior of the N300 regulators during sleep mode, when sleep signal is active low. In order to reduce power during sleep mode two of the three regulators can be switched off. The third regulator, VSL which is kept active then supplies the output of the other regulators. All regulator outputs from PSCLD, N300 are supplied but the current consumption is restricted. It is also possible to keep the VL regulator active during sleep mode in case the power consumption is in excess of what the VSL regulator can deliver in sleep mode to the VL output.

The PSCLD, N300 also contains switches for connecting the charger voltage and the battery voltage to the base band A/D converters. Since the battery voltage is present and the charger voltage might be present in power off the A/D converter signals must be connected using switches. The switch state can be changed by the MCU via the serial control bus. When PURX is active both switches are open to prevent battery/charger voltage from being applied to the baseband measurement circuitry which is powered off. Before any measurement can be performed both switches must be set in not closed mode by MCU.

Charger Detection

A charger is detected if the voltage on N300, 'VCHAR' is higher than 0.5V. The charger voltage is scaled outside PSCLD, N300 using resistors R302 and R303. With the implemented resistor values the corresponding voltage at the charger input is 2.8V. Due to the multifunction of the charger detection signal from PSCLD, N300 to ASIC, D151 the charger detection line is not forced ,active high until PURX is inactive. In case PURX is inactive the charger detection signal is directly passed to D151. The active high on 'CHRG_IND/ALARM' pin generates and interrupt to MCU which then starts the charger detection task in SW.

The reason for not passing the charger detection signal to the ASIC, D151 when PURX is active is the RTC implementation in ASIC, D151., The same signal is used to power up the system if the RTC alarm is activated and the system is powered up. Due to this the PSCLD, N300 'CHRG_IND/ALARM' pin, is in input mode as long as PURX is active, low. Correspondingly at the ASIC end this pin is an output as long as PURX is active. The RTC function needs SW support and is not implemented in nhe–8/9. The baseband architecture provides for the functionality required.

SIM Interface and Regulator in N300

The SIM card regulator and interface circuitry is integrated into the PSCLD, N300. The benefit from this is that the interface circuits are operating from the same supply voltage as the card, avoiding the voltage drop caused by the external switch used in previous designs. The PSCLD, N300 SIM interface also acts as voltage level shifting between the SIM interface in the ASIC, D151 operating at 3V and the card operating at 5V. Interface control in PSCLD is direct from ASIC, D151 SIM interface using SIM(5:0) bus. The MCU can select the power supply voltage for the SIM using the serial control bus. The default value is 3V which needs to be changed to 5V before powering up the SIM interface in the ASIC, D151. Regulator enable and disable is controlled by the ASIC via SIM(2).

Power Up Sequence

The baseband can be powered up in three different ways.

When the power switch is pressed input pin 'PWRONX' on PSCLD, N300 is connected to ground and this switches the regulators inside PSCLD on.

An other way to power up is to connect the charger, whichr causes the baseband to power up and start charging the battery.

The third way to power the system up is to attach the battery.

Power up using Power on Button

This is the most common way to power the system up. It is successful if the battery voltage is higher than the power on reset level set by the MCU, in the PSCLD, N300, default value 5.5 Vdc. The power up sequence is started when the power on input pin 'PWRONX' at PSCLD is activated, low. The PSCLD then internally enters the reset state where the regulators are switched on. At this state the PWM output 'CHRGSW' on the PSCLD is forced active to support additional power from any charger connected. The sleep control output signal is forced high enabling the regulator to supply the VCO and startup the clock.

After the power on reset delay of 50–150 ms PURX is released and the system exits reset mode. The PWM output is still active until the MCU writes the first value to the PWM register. The watchdog has to be acknowledged within 16 s after that PURX is released, go high.

The power up sequence using power on/off button is shown below.

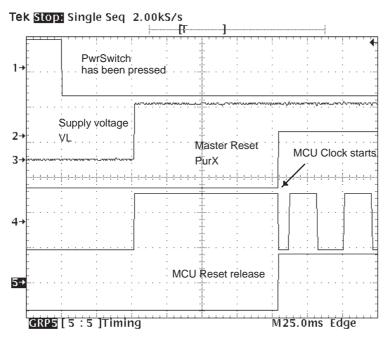


Figure 4. Power up sequence

Power up with Empty Battery using Charger

When the charger is inserted into the DC jack or charger voltage is supplied at the system connector contacts/pins, PSCLD (N300) powers up the baseband. The charging control switch is operating as a linear regulator, the output voltage is 4.5V–5V. This allows the battery to be charged immediately when the charger is connected, which guarantees successful power up procedure with an empty battery.

With an empty battery the only power source is the charger. When the battery has been initially charged and the voltage is higher than the PSCLD, N300 switch on the sleep control signal which is connected to the PSCLD for power saving function. Sleep mode, enters inactive state, high, to enable the regulator that controls the power supply to the VCO to be started. The ASIC, D151 which normally controls the sleep control line has the sleep output inactive, low, as long as the system reset 'PURX', from PSCLD, is active, low. After a delay of about 5–10 ms the system reset output from PSCLD enters high state. This delay is to ensure that the clock is stable when the ASIC exits reset.

The sleep control output from the PSCLD that has been controling VXOENA until now, returns the control to the sleep signal from the ASIC as the PURX signal goes inactive. When the PURX signal goes inactive, high, the charge detection output at PSCLD, that is in input mode when PURX is active, switches to output and goes high indicating that a charger is present. When the system reset, PURX, goes high the sleep control line is forced inactive, high, by the ASIC, D151 via PSCLD, N300.

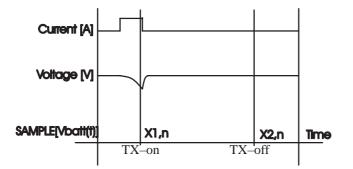
Once the system has exited reset mode the battery is initially charged until the MCU writes a new value to the PWM register in the PSCLD. If the watchdog is not acknowledged the battery charging is switched off when the PSCLD shuts off the power to the baseband. The PSCLD will not enter the power on mode again until the charger has been extracted and inserted again or the power on/off switch has been pressed.

The battery is charged as long as the power on line, PWRONX is active low. This is done to allow the phone to be started manually from the power button when the charger is conncted and there is no need to disconnect the charger to get a power up if the battery is empty.

Power On Reset Operation

The system power up reset is generated by the regulator IC, N300. The reset is connected to the ASIC, D151 that is put into reset mode whenever the reset signal, PURX is low. The ASIC (D151) then resets the DSP (D152), the MCU (D150) and the digital parts in RFI2 (N450). When reset is removed the clock supplied to the ASIC, D151 is enabled inside the ASIC. At this point the 32.768 kHz oscillator signal is not enabled inside the ASIC, since the oscillator is still in the startup phase.

To start up the block requiring 32.768 kHz clock the MCU must enable the 32.768 kHz clock. The MCU reset counter is now started and the MCU reset is still kept active, low. the 6.5 MHz clock is started to MCU in order to reset the MCU(D150), it is a synchronous reset device and needs clock to reset. The reset to MCU is inactivated after 128 MCU clock cycles and MCU is started.


DSP (D152) and RFI2 (N450) reset is kept active when the clock inside the ASIC, D151 is started up. 13 MHz clock is applied to DSP (D152) and resets it. The DSP, D152 is a synchronous reset device, which requires clock to reset. The RFI2, N450 digital parts are reset asynchronously and does not need clock to support reset.

As both the MCU, D151 and DSP, D152 are synchronous reset devices all interface signals connected between these devices and ASIC D151 which are used as I/O are set into input mode on the ASIC, D151 side during reset. This prevents bus conflicts until the MCU, D150 and the DSP, D152 has been reset.

The DSP (D152) and RFI2 (N450) reset signal remains active after the MCU has left reset mode. The MCU writes to the ASIC register to disable the DSP reset. This arrangement allows the MCU to reset the DSP, D152 and RFI2, N450 when ever needed. The MCU can reset the DSP by setting the reset active in the ASIC, D151 register.

Power Off due to low Battery Voltage

The battery monitor software determines when the handset must power off due to low battery voltage. This happens when the battery voltage, estimated by the monitor software, reaches a predefined level, the cutoff voltage. The cutoff voltage depends upon the battery type, in HD844 they are 5.3V for NiMH, and 5.5V for Li–ION.

MCU

The baseband uses a Hitachi H3001 type of MCU. This is a 16–bit internal MCU with 8–bit external data bus. The MCU is capable of addressing up to 16 MByte of memory space linearly depending upon the mode of operation. The MCU has a non multiplexed address/data bus which means that memory access can be done using less clock cycles thus improving the performance but also tightening up memory access requirements.

The MCU is used in mode 3 which means 8-bit external data bus and 16 Mbyte of address space. The MCU operating frequency is equal to the supplied clock frequency. The MCU has 512 bytes of internal SRAM. The MCU has one serial channel, USART that can operate in synchronous and asynchronous mode.

The USART is used in the MBUS implementation. Clock required for the USART is generated by the internal baud rate generator. The MCU has 5 internal timers that can be used for timing generation. Timer TIOCA0 input pin 71 is used for generation of netfree signal from the MBUS receive signal which is connected to the MCU USART receiver input on pin 2.

The reason for generating the MBUS netfree using the counter is the fact that the 32.768 kHz clock that would have been used for this timing is a slow starting oscillator. Which means that in production testing the MBUS can not be operated until the netfree counter is operational.

As the netfree counter is implemented using the MCU internal counter the netfree counter is available immediately after reset. In the same way the MCU OS timer is operated from an internal timer in the early stage until the 32.768 kHz clock can be enabled and the OS timer provided in the ASIC can be used.

The MCU contains 4 10–bit A/D converters channels that are used for baseband monitoring.

The MCU, D150 has several programmable I/O ports which can be configured by SW. Port 4 which multiplexed with the LSB part of the data bus is used baseband control. In the mode the MCU is operating, this port can be used as an I/O port and not as part of the data bus, D0–D7.

MCU Access and Wait State Generation

The MCU can access external devices in 2 state access or 3 state access. In two state access the MCU uses two clock cycles to access data from the external device.

In 3 state access the MCU uses 3 clock cycles to access the external device or more if wait states are enabled. The wait state controller can operate in different modes. In this case the programmable wait mode is used. This means that the programmed number of wait states in the wait control register is inserted when an access is performed to a device located in that area. The complete address space is divided into 8 areas each covering 2 MByte of address space. The access type for each area can be set by bits in the access state control register. Further more the wait state function can be enabled separately for each area by the wait state control enable register. This means that in 3 state access two types of accesses can be performed with a fixed setting:

3 state access without wait states

3 state access with the number of wait states inserted determined by the wait control register

If the wait state controller is not enabled for a 3 state access area no waits states are inserted when accessing that area even if the wait control register contains a value that differs from 0.

MCU and Memory Map

The chip selects for the memories is generated by the ASIC. MCU address lines A23–A21 are used for this purpose. This means that the MCU address space can be divided into 8 areas, the same amount of areas that the MCU supports for wait state generation. For ASIC, D150 access MCU address A5–A0 is used. 7–bits are required during MCU boot access while ASIC register access requires 6–bits. The boot ROM and internal ASIC, D151 registers are located in separate areas to allow the use of only 7 address bits for addressing both the boot ROM and ASIC registers.

The MCU starts up with address lines A23–A21 configured as I/O lines even if the operating mode is set to extended mode by HW. To avoid address decoding problems the internal addresses for decoding the ASIC registers are gated until the first write operation to the ASIC registers. Before this write operation is performed, the MCU must set up address signal A23–A21 to be used as addresses lines. The MCU IC design has been modified in later versions to work according to mode setting pin. The first write operation, a "dummy" write, enables the address lines internally in the ASIC and ASIC registers can be accessed by write operations.

The MCU Boots from address 000000H. After D151 reset sequence this address is located in the ASIC, D151 internal ROM, which is 128 bytes. During the execution of this code the MCU, D150 looks if pin 3, serial clock SCK is pulled low. In this case the execution stops and the MCU waits for the flash prommer to initiate flash loading. If the SCK line is not pulled low and if the flash is empty the MCU starts execution from the flash address 40000EH.

The flash area 400000H–40000DH is reserved for baseband related HW identifiers. This field is used to tell the MCU the configuration of the baseband it is operating in. MCU operating speed, number of program memories, amount of wait states, EEPROM configuration etc. is coded into these bytes. The flash prommer specifications deals with this in more detail. In case of SW update the flash prommer will use the same identifier as read out at the startup of the reprogramming.

As the MCU external SRAM is mapped in the same area as the boot ROM the MCU must write to the ASIC in order to disable the boot ROM and enable the external SRAM. The MCU then sets up the wait state registers and the access registers. After reset all access is performed using 3 state access with 3 wait states inserted to allow initial boot with very slow devices.

Since the interrupt vector table resides in the area 000004H–0000F3H the vector table must be copied from the flash to the SRAM before any interrupt is enabled. In case this is not done properly the SW will crash at the point when the interrupts are to be serviced.

The ASIC is located in the address area close to the end to allow short addressing operations to the ASIC registers to improve the performance of the system. The flash area is divided into two areas to allow for two devices to be used in case of availability problem or large memory requirement. nhe–8/9 uses only one device in the first flash area.

The EEPROM area is reserved for parallel EEPROM devices. nhe–8/9 is prepared for parallel EEPROM, but the default EEPROM is a serial device connected to the MCU I/O port.

MCU Flash Loading

The flash loading equipment is connected to the baseband by means of the test connector before the module is cut out from the frame. Updating SW on a final product is done by removing the battery and connect a special adapter that contains the necessary contacting elements. The contacts on the baseband board are test points that are accessable when the battery is detached. The power supply for the base band is supplied via the adapter and controlled by the flash programming equipment. The base band module is powered up when the power is connected to the battery contact pins.

The interface lines between the flash prommer and the baseband are in low state when power is not connected by the flash prommer. The data transfer between the flash programming equipment and the base band is synchronous and the clock is generated by the flash prommer. The same USART that is used for MBUS communication is used for the serial synchronous communication. The PSCLD watchdog is disabled when the flash loading battery pack and cable is connected.

After the flash battery pack adapter has been mounted or the test connector has been connected to the board the power to the base band module is connected by the flash prommer or the test equipment. All interface lines are kept low except for the data transmit from the baseband that is in reception mode on the flash prommer side, this signal is called TXF. The MCU boots from ASIC and investigates the status of the synchronous clock line.

If the clock input line from the flash prommer is low or no valid SW is located in the flash the MCU forces the initially high TXF line low, acknowledging to the flash prommer that it is ready to accept data . The flash prommer sends data length, 2 bytes, on the RXF data line to the baseband.

The MCU acknowledges the 2 data byte reception by pulling the TXF line high. The flash prommer now transmits the data on the RXF line to the MCU. The MCU loads the data into the internal SRAM. After having received the transferred data correctly MCU puts the TXF line low and jumps into internal SRAM and starts to execute the code.

After a guard time of 1 ms the TXF line is put high by the MCU. After 1 ms the TXF is put low indicating that the external SRAM test is going on. After further 1 ms the TXF is put high indicating that external SRAM test has passed. The MCU performs the flash memory identification based upon the identifiers specified in the Flash Programming Specifications. In case of an empty device, identifier locations shows FFH, the flash device code is read and transmitted to the Flash Prommer.

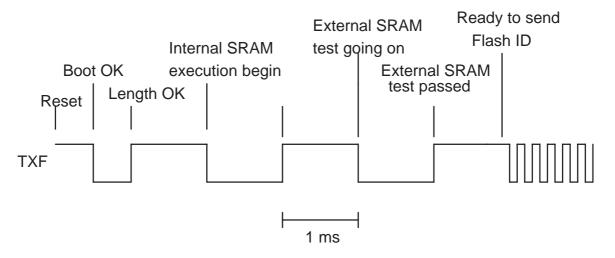


Figure 5. Flash Loading acknowledgement procedure

After that, the device mounted on base band has been identified the Flash Prommer down loads the appropriate programming algorithm to the baseband. The algorithm is stored in the external SRAM on the baseband module and after having down loaded the algorithm and the data transfer SW, MCU jumps to the external SRAM and starts to execute the code. The MCU now asks the prommer to connect the flash programming power supply. This SW loads the data to be programmed into the flash and implements the programming algorithm that has been down loaded. The flash data is loaded in bytes.

Flash Prommer Connection Using Dummy Battery

For MCU SW updating in the field a special adapter can be used to connect to the test points which are accessable through SIM opening in the chassis, located behind the battery. Supply voltage must be connected as well as the flash programming equipment

Flash, D400

A 8 MBit flash is used as the main program memory, D400 the device is 3 V read/program with external 12V VPP for programming. The device is sectored and contains 16 64 kByte blocks. The sector capability is not used in the nhe–8/9 application. The speed of the device is 180 ns. The MCU operating at 13 MHz will access the flash in 3 state access, requiring 190 ns access time from the memory.

The flash has a deep power down mode that can be used when the device is not active. There is a requirement for a longer access time if the device is accessed immediately after exiting power down. This requirement is met since the signal controlling the VCO power control is used for this purpose. The flash power down pin, pin 12 is connected to ASIC, D151 pin 130.

The reason for connecting it to the ASIC and not direct to the VCO power control signal is that this pin on the ASIC is low as long as the ASIC is in reset mode. This signal resets the flash memory and acts as a power up reset to the memory.

SRAM D403 for MCU

The baseband is designed to use SRAM size 128x8/64kx8. Default in nhe–8/9 is 64Kx8. The required speed is 100 ns as the MCU will operate at 13 MHz and the SRAM will be accessed in 3 state access. The SRAM has no battery backup which means that the content is lost even during short power supply disconnections. As shown in the memory map the SRAM is not accessable after boot until the MCU has enabled the SRAM access by writing to the ASIC register.

Serial EEPROM D402

The nhe–8/9 Base Band uses 2Kx8 bit I2C serial EEPROM, which is connected to the MCU port P4. The 16 kbit serial EEPROM has a 16 byte page. The byte/page write time is 10 ms. The EEPROM uses I2C serial interface to communicate with the MCU. In addition to this the EEPROM has a write protect signal, pin 7 that protects the EEPROM from accidental write operations, if high. The write protect signal, pin 7 must be low, before the write operation to the EEPROM can start. After that the write operation is completed the write enable signal is put into inactive state, high.

The MCU generates by SW the required I2C timing on the SDA (serial data) and SCL (serial clock) pins at port P4 used for the EEPROM interface. The device acknowledges it's presence after each address written to it. When writing, each byte is acknowledged. The acknowledge procedure takes place during the "fictive" transmission of the 9 th bit. The MCU must therefore release the line for the 9 th bit, give the clock pulse for the device, to perform the acknowledgement. The serial data line is operating as open drain which requires pull up resistor on the base band.

The device has 3 external address pins. These adress pins are user selectable. The relation between the transmitted address and the pin setting is inverted. The device pins will be tied to ground on the base band which means that the first 4 address bits to be put out on the data line are "1010", the MSB is internally fixed to "1". As the device is configured as 8x256 byte memory areas the next 3 bits selects the area. In this device address byte the read/write bit is transmitted. The next byte to be output on the data line is the word address, which gives the final byte address. The device will acknowledge both these bytes.

Data must be valid 5 us before rising edge of the clock and the data hold time is specified to 0 ns with respect to the falling edge. The setup time must be implemented by the MCU SW. The hold time is simply achieved by first writing the clock to low state and after that the status of the data line is changed.

Note:—The page write mode is initialised by not transmitting the stop bit after each byte transfer. The EEPROM acknowledge each byte that has been written to it by pulling the data line low during the fictive transmission of the 9 th byte.

Baseband A/D converter Channels usage in N450 and D150

The auxiliary A/D converter channels inside RFI2, N450 are used by MCU to measure battery voltage, reference voltage output and system board temperature. This value is used to controll LCD operating voltage for optimal contrast as a function of temperature.

The A/D converters are accessed by the DSP, D152 via the ASIC, D151. The required resolution is 10 bit.

The scaling factor is created using 5% resistors and it is therefore a requirement to have an alignment procedure in the production phase. Each resistor network is supplied with a known input voltage and the measured value is used against the theoretically calculated value. As a result of this operation standard 5% resistors can be used in the voltage scaling circuitry.

The A/D converter used in RFI2, N450 for the measurement are sigma-delta type and the zero value is centered around 50 % of the supply voltage, 1.6V. This means that the A/D converter reading is negative when the input voltage to the converter is less than half of the supply voltage. In calculations the true A/D reading is got by adding 800H to the read value modulo 4096.

The MCU has 4 10 bit A/D channels which are used in parallel to the channels in N450. The MCu can measure charger voltage, battery size, battery temperature and accessory detection by using it's own converters.

External Accessory Detection via XMIC/ID – line

MCU A/D channel 2 is used to detect accessories connected to the system connector using the XMIC/ID line. To be able to determine which accessory has been connected MCU measures the DC voltage on the XMIC/ID input. The accessory is detected in accordance with the CAP Accessory specifications. The base band has a pull–up resistor network of 32 kohm to VA. The accessory has a pull down. The A/D converter value can be calculated using the following formula:

A/D = (ACCI+10 kohm)/(ACCI+32 kohm)x4095x/3.2

where ACCI is the DC input impedance of the accessory device connected to the system connector.

Accessory Type	Accessory resistance	Voltage on	A/D Converte terminal (V)	A/D Con- verter Val-	Remark			
		Min	Тур	ue (Dec)				
IR Link	100 kohm	2.46	2.63	2.79	853			
Headset	47 kohm	2.1	2.3	2.45	739			
Compact HF	22 kohm	1.7	1.9	2.05	607			

Table 15.	Accessory	Detection Voltage	
-----------	-----------	--------------------------	--

Keyboard Interface

The keypad matrix is located on a UI module PCB,intefacing is acomplished by the board to board connector X101. The power–on key is also connected to the PSCLD to switch power on. Due to the internal pull up inside PSCLD, N300 to a higher battery voltage, a rectifier, V418 on the UI board is required in the keypad matrix for the power on keypad to prevent the higher voltage to interfere with the keypad matrix.

Series resistors, R261–R264 are implemented in the Column output to reduce the EMI radiation to the UI PCB. Capacitors C257–C260 reduces the EMC radiation and absorbs any ESD produced over an air gap to the keymat.

As the serial display driver interface uses ROW5 for data transmission series resistors are needed to prevent keypad or double keypad pressing from interfering with the display communication. In a similar way R265–R269 in the ROW lines reduces the EMI to the UI board. Capacitors C251–C256 implements a LP–filter together with each resistor in the ROW line. The capacitors also absorbs ESD pulses over an air gap to the keymat.

During idle mode when no keyboard activity is present the MCU sets the column outputs to "0" and enables the keyboard interrupt. An interrupt is generated when a ROW input is pulled low. Each ROW input on the ASIC, D151 has an internal pull–up. The keyboard interrupt starts up the MCU, which begins the scanning procedure. As there are keypads to be detected outside the matrix the MCU sets all columns to "1" and reads the ROW inputs. If a logic "0" is read on any ROW this means that one of the 6 possible non matrix keypads has been pressed. If the result was a "1" on each ROW the MCU writes a "0" on each column consecutively while the rest of the column outputs are kept in tri–state to allow dual keypad activation to be detected.

After that the keyboard scanning is completed and no activity is found the MCU writes "0" to all columns, enables the keyboard interrupt and enters sleep mode where the clock to the MCU is stopped. A key press will again wake up the MCU.

Keyboard and Display Light

The display and keyboard are illuminated by LED's. The light is normally switched on when any key is pressed. The rules for light switching are defined in the SW UI specifications. The display and keyboard lights are controlled by the MCU. The LED's are connected two in series to reduce the power consumption. Due to the amount of LED's required for the keyboard and display light they are divided into three groups. Each group has it's own control transistor. The LED switch transistor is connected as a constant current source, which means that the current limiting resistor is put in the emitter circuitry. This arrangement will maintain LED brightness over battery voltage variations and momentary power consumption of the phone. The LED's are connected straight to the battery voltage, to lighten load on regulated voltages. This connection allows two LED's to connected in series.

The light requirement is different for the display and the keyboard. This is one of the reason for splitting the LED control among three transistors. Each LED group can now be set to different LED current thus affecting the illumination. The reason for splitting the LED control is the power dissipation in the control transistor and the current limiting resistor. This is particular the problem during charging when the battery voltage is high.

The LED transistor control lines are coming from PSCLD. The MCU controls these lines by writing to PSCLD using the serial control bus. There are two LED control lines provided by the PSCLD. The display and keyboard light controls are connected to a separate control lines. This means that the keyboard and display light can be controlled separately. The advantage of this is that the power dissipation and heating of the phone can be reduced by only having the required lights switched on.

There is no PWM control on these PSCLD control lines to allow dimming of the keyboard and display lights. These control outputs from PSCLD are low when PSCLD exits reset mode, lights are off, and MCU then switches them on according to the user settings or user actions.

Audio Control

The audio codec N200 is controlled by the MCU, D150. Digital audio is transferred on the CODECB(5:0). PCM data is clocked at 512 kHz from the ASIC and the ASIC also generates 8 kHz synchronization signal for the bus. Data is put out on the bus at the rising edge of the clock and read in at the falling edge. Data from the DSP, D152 to the audio codec, N200 is transmitted as a separate signal compared to data transmitted from the audio codec, N200 to the DSP, D152.

The communication is full duplex synchronous. The transmission is started at the falling edge of the synchronization pulse. 16 bits of data is transmitted after each synchronization pulse. The 512 kHz clock is generated form the13 MHz 'master clock' using a PLL type of approach which means that the output frequency is not 512 kHz at any moment. The frequency varies as the PLL adjusts the frequency. The average frequency is 512 kHz.

The clock is not supplied to the codec when it is not needed. The clock is controlled by both MCU and DSP. DTMF tones are generated by the audio codec and for that purposes the 512 kHz clock is needed. The MCU must switch on the clock before the DTMF generation control data is transmitted on the serial control bus.

The serial control bus uses clock, data and chip select to communicate with the device on the bus. This interface is built into the ASIC and the MCU writes the destination and data to the ASIC registers. The serial communication is then initiated by the ASIC. Data can be read form the audio codec, N200 via this bus.

Internal Audio

The bias for the internal microphone is generated from the PSCLD, N300 analog output, VA using a bias generator. The bias generation is designed in such a way that common mode signals induced into the microphone capsule wires are suppressed by the input amplifier in the audio codec. The resistor, R209 is implented to have a well defined load of the microphone bias transistor,V200. The bias generator is switched on/off by the MCU to save power, when not needed, the control signal is taken from the audio codec, N200 output latch, pin 26. The microphone amplifier gain is set by the MCU to match with the used microphone. The microphone amplifier input to the audio codec is a symmetrical input.

The microphone signal is connected to the baseband using filtering to prevent EMC radiation and RF PA signal to interfere with the microphone signal.

The microphone house is equiped with a 470pF 0603 capacitor to suppress 900 MHz interference. R205 is connected to ground for the microphone bias current. R202 supplies the bias current to the microphone from the generator circuitry R201, R209, C200 and V200. R221 and C202 in the positive microphone path forms a simple lowpass filter, the same goes for R222 and C205 in the negative path. C203 and C206 are used to remove the DC level from the bias circuitry, before the microphone signal is fead to the CODEC.

The earpiece amplifier used for the internal earpiece is of differential type and is designed as a bridge amplifier to give the output swing for the required sound pressure. Since the power supply is only 3V a dynamic type ear piece has to be used to achieve the propper sound pressure. This means that the ear piece is a low impedance type and represents a significant load to the output amplifier. Series inductors are implemented to prevent EMC radiation from the connection on baseband to the earpiece. The same filter also prevents the PA RF field from causing interference in the audio codec, N200 output stage to the earpiece.

The buzzer is controlled by the PWM output provided by the audio codec, N200. Transistors V425 and V403 on UI board acts as drivers for the low impedance buzzer. The buzzer is driven from the battery voltage via V403. As the buzzer is connected to the baseband via the keyboard the buzzer driving signal 'BUZZER' is EMC protected in baseband module . As the buzzer is a dynamic one the impedance shows a clear inductance. Therefore a free running diode V413 in UI is used to clip the voltage spikes induced in the Buzzer line when the driving transistor, V403 is switched off.

The buzzer frequency is determined by the internal setup of N200. The frequency is determined by the MCU via the serial control bus. The output level can be adjusted by the PWM function in the buzzer output in N200.

External Audio

The external microphone audio signal is applied to the baseband system connector and connected to the audio block using signals XMIC and SGND. In order to improve the external audio performance the input circuitry is arranged in a sort of dual ended. A wheatstone type of bridge configuration is created by resistors R216, R217, R219 and R220. The signal is attenuated around 20 dB to not cause distortion in the microphone amplifier. The microphone signal is attenuated by resistors R216, R207 and R217.

To allow the external earpiece to be driven dual ended the external microphone signal ground is connected to the negative output of the external audio earpiece amplifier. This means that with reference to audio codec, N200 ground, there is a signal level on the SGND line. This arrangement requires that the external microphone amplifier supplies the signal on the SGND line to the XMIC line.

With this arrangement the differential voltage over R207 caused by the signal in the SGND line is canceled. There is however a common mode component which is relatively high presented at both the external microphone input pins at the audio codec input, pins 31 and 30. The microphone amplifier has a good common mode rejection ratio, but a slight phase shift in the signals will remove the balance.

To compensate for this the signal from the external earpiece amplifier positive output, which also feeds the external audio output from the baseband, is feed to the remaining resistors in the bridge, R219 and R220. This arrangement will attenuate the common mode signal presented to the microphone amplifier caused by the audio signal in the SGND line. Since the positive output from the audio codec, XEAR signal introduces a DC signal to the microphone amplifier the DC signal on the XMIC and SGND lines are blocked by capacitors C218 and C220.

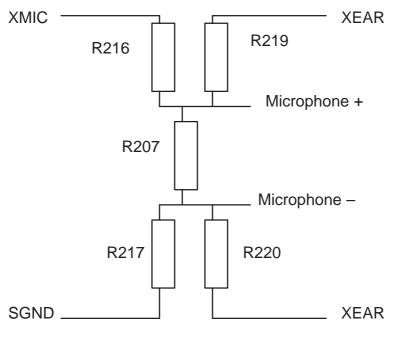


Figure 6. XMIC Bridge Implementation

The external audio output is the XEAR signal on the system connector pin. The XEAR signal is taken from audio codec N200 pin 3. The output impedance is increased to 47 ohms by resistor R214. This resistor prevents the output amplifier from being short circuited even if the pin at the system connector is short circuited.

The DC voltage at the XEAR output is used to control the mute function of the accessory. When internal audio is selected the XEAR amplifier in N200 is switched off and the DC voltage at the output on pin 2 is removed.

External audio output level is adjusted by the variable gain amplifier in the N200 by MCU via the serial control bus from the ASIC, D151. L104 and C102 is EMC protection for the XEAR signal at the system connector. This filter also prevents RF signals induced in the external cables from creating interference in the audio codec output stage.

DSP

The DSP, D152 executes code from the internal ROM. The baseband also provides external memories for the DSP, D404 and D405. The DSP is capable of addressing 64 kword of memory. The memory area is divided into a code execution area and a data storage area. The code execution area is located at address 8000H–FFFFH. The external memories are arranged in such a way that the DSP can access the external memories both as data storage and code execution.

The memory chip select is taken from the memory access strobe signal from the DSP. This means that the memory is active during any memory access. The memories are connected in such a way that the write control is CE controlled write, which means that both the write signal and the output enable signal are active at the same time. This implementation is required since the DSP supports only one signal for write/read control.

The DSP is operating form the 13 MHz clock. In order to get the required performance the frequency is internally increased by a PLL to 39 MHz. The PLL requires a settling time of 50 us after the clock has been supplied before proper operation is established. This settling counter is inside the DSP although the ASIC, D151 contains a counter that will delay the interrupt with a programmable amount of clock cycles before the interrupt causing the clock to be switched on is presented to the DSP.

The DSP has full control over the clock supplied to it. When the DSP is to enter sleep mode the clock is switched off by setting a bit in the ASIC register. The clock is automatically switched on when an interrupt is generated.

DSP ASIC Access

The DSP is accessing the ASIC in the DSP I/O area. 2 wait states are required for the ASIC access. Some of the DSP registers located in the ASIC are retimed to the internal ASIC clock and requires special handling with respect to consecutive writing, which means that the same register can not be re–written until a specified time has passed. To cope with this DSP is inserting NOP instructions to satisfy this delay requirement.

DSP Interrupts

The DSP supports 4 external interrupts, of which 3 are used. The interrupts to the DSP are active low.

The ASIC, D151 generates two of the interrupts. The last interrupt is generated by the RFI2, N450 auxiliary A/D converter, to indicate a baseband measurement A/D conversion is completed.

INT0, which is the highest priority interrupt, is used for data reception from the receiver and is generated by the ASIC. INT1 signal is used for auxiliary A/D channel conversions generated by the RFI2, and indicates termination of a measurement, requested by the DSP.

There are 8 auxiliary channels supported by the RFI2, not all are used in nhe–8/9 even though most of the channels are connected. INT3 is a low priority interrupt generated by the ASIC timer. The DSP programs the timer value and an interrupt is given when the timer expires. The interrupt must be active at least 1 DSP clock cycle as it is sampled on the rising/falling edge by the DSP.

INT0 is used for the reveiver A/D converter in RFI2. The ASIC reads the data from the receiver path A/D converter in RFI2 at every data available signal activation from the RFI2. After the data transfer when the data is stored in the ASIC the ASIC generates a receiver interrupt to the DSP using INT1 (INT0?) signal. The DSP enters the interrupt routine and services the interrupt by reading the data from the ASIC.

INT1 signal is used for the auxiliary A/D converter channels in RFI2. These A/D channles are used for baseband battery voltage and system board temperature monitoring. Two channels are used for battery monitoring. The start of the A/D conversion task is timed in such a way that auxiliary channel 0 results are measured during transmission when the PA is active and channel 7 is measuring when the PA is off.

DSP Serial Communications Interface

The DSP contains two synchronous serial communications interfaces. One of the interfaces are used to communicate with the audio codec, N200. The 512 kHz clock required for the data transfer is provided by the ASIC, D151 as well as the 8 kHz synchronization signal. Data is transferred on to lines, RX and TX creating a full duplex connection. Data is presented on the bus on the first rising edge of the clock after the falling edge of the synchronization pulse. Data is read in by each device on the falling edge of clock. Data transfer is 16 bits after each synchronization pulse.

The DSP, D152 has control over the clock provided to the audio codec. The DSP can switch on the clock to start the communication, and switch it off when it is not needed. This clock is also under control of MCU, D150.

The second serial interface is used for debugging and Digital Audio Interface. The ASIC provides the clock and the synchronization for this serial interface as well, since the two serial interfaces need to be operated synchronously in case of DAI measurements.

RF Synthesizer Control

The synthesizer control is performed by the DSP, D152 using the ASIC, D151 as the interfacing and timing device. Different synthesizer interfaces are supported, and the required interafce can be selected by the DSP at the initialisation stage of the ASIC. The synthesizer interface also includes timing registers for programming synthesizer data. The DSP loads the synthesizer data into the transmission registers in the ASIC synthesizer interface together with the timing information. The system timing information is used for synthesizer data loading.

When the system timing register content, frame counter value, matches the timing value programmed into the synthesizer interface, the interface transmits the loaded data to the RF synthesizer, and the VCO frequency is changed accordingly. As the synthesizer may be powered off, when not needed, the interface pins towards the synthesizer can be put in tri–state or forced low, when the interface is not active. Technical Documentation

RFI2, N450 Operation

The RFI2, N450 contains the converters to perform the A/D conversion of the received signal, and the D/A converters to perform the conversion of the modulated signal to be supplied to the transmitter section. In addition to this the RFI2 chip also contains the D/A converter for providing AFC voltage to the RF section. This AFC voltage controls the frequency of the 13 MHz VCO which supplies the system clock to the baseband.

Additionally the RFI2, N450 also contains the D/A converter to control the RF transmitter power control. The power control values are stored in the ASIC, D151 and at the start of each transmission the values are read from the ASIC, D151 to the D/A converter producing the power control pulse. This D/A converter is used during the reception to provide AGC for the receiver RF parts.

One of the A/D converters used for receiver signal conversion can be used as an auxiliary converter that supplies 8 channels for baseband measurement purposes. When the converter is used in this mode each conversion generates an interrupt directly to the DSP. The DSP operates this converter via the ASIC, D151.

Data communication between the ASIC, D151 and RFI2, N450 is carried out on a 12 bit parallel data bus. The ASIC, D151 uses 4 address lines to access RFI2, N450. Depending on the direction of the communication either the write control signal is used to write data to RFI2, N450 or the read signal is used to read data from RFI2, N450. The ASIC, D151 supplies 13 MHz clock to the RFI2, N450. This clock is used as reference for the A/D and D/A converters. Communication between the ASIC, D151 and the RFI2, N450 is related to the clock.

The RFI2, N450 digital supply is taken from the baseband main digital supply. The analog power supply, 4.5V is generated by a regulator N451 supplied from the VBATT voltage. The analog power supply is always supplied as long as the baseband is powered and VXOENA signal is activated (high).

Receiver Timing and AGC

RF receiver power on timing is performed by the ASIC, D151. The DSP, D152, can program the time when the receiver is to be powered on. The timing information is taken from the system timing that is based upon the frame counter inside the ASIC, D151 which is synchronised to the base station carrier frequency using AFC to tune the receiver.

As transmission and reception takes place at different time the D/A converter used for transmitter power control is used to control the AGC of the receiver during reception. This requires the DSP, D152 to alter the content of the SRAM containing the information that is written to the D/A converter for the reception and the transmission.

RF Transmitter Timing and Power Control

The RF Power Amplifier (PA) timing control is performed by the ASIC, D151. The power control is performed by the ASIC D151 using the D/A converter in N450. The ASIC, D151 controls the power supply voltage to the RF transmitter sections. As the first step the relevant circuits are powered on using the TX power control output from the ASIC, D151. The timing for powering on the TX circuits is generated from the ASIC internal system timing circuitry, frame counter. As the RF TX circuitry needs time to stabilize after power on before the actual transmitter can be started there is a programmable delay before the ASIC, D151 starts to write the power ramp data to the D/A converter inside N450.

The TXC signal which is generated in this way controls the power ramp of the PA and the power level for that burst. At the end of the burst the power ramp is written to the D/A converter inside N450. The data that creates the power ramp and final power level is stored in a SRAM inside the ASIC, D151. At the start of the ramp the contents of the SRAM is read out in increasing address order.

At the end of the ramp the contents is read out in decreasing adress order. The power level during the burst is determined by the last value in the SRAM, this value is the value that will remain in the D/A converter during the burst. The DSP, D152 may change the shape of the falling slope of the power ramp by writing new values to the power ramp SRAM during the burst.

As the transmitter may have to adjust the transmitter burst due to the distance from the base station there is an additional timer for this purpose. This timing is called the timing advance and will cause the transmission to start earlier when the distance to the base station increases.

SIM Interface

The SIM interface is the serial interface between the smart card and the baseband. The SIM interface logic levels are 5V. The baseband is designed in such a way that a 3V technology SIM can be used whenever it is available. The SIM interface signals are generated inside the ASIC. The signals coming from the ASIC are converted to 5V levels. The PSCLD circuit is used as the logic voltage conversion circuit for the SIM interface. The PSCLD circuit also contains the voltage regulator for the SIM power supply.

The control signals from the ASIC to PSCLD are at 3V level and the signals between PSCLD and the SIM are 5V levels. An additional control line between the ASIC and the PSCLD is used to control the direction of the DATA buffer between the SIM and the PSCLD. In a 3V technology environment this signal is internal to the ASIC only. The pull up resistor required on the SIM DATA line is integrated into the PSCLD and the pull–up is connected to the SIM regulator output inside PSCLD. In idle the DATA line is kept as input by both the SIM and the interface on the base band. The pull–up resistor is keeping the DATA line in it's high state.

The power up and power down sequences of the SIM interface is performed according to ISO 7816–3. To protect the card from damage when the power supply is removed during power on there is a control signal, CARDDETX, that automatically starts the power down sequence. The CARDDETX information is taken from the battery size indicator signal, BSI, from the battery connector. The battery connector is mechanically designed in such a way that the BSI signal contact is disconnected first, while the power is still supplied by the battery, and the battery power contacts are disconnected after that the battery pack has moved a specified distance.

Since the power supply to the SIM is derived from PSCLD also using 3V technology SIM the power supply voltage of the SIM regulator is programmable 3.15/4.8 V. The voltage is selected by using the serial control bus to PSCLD. The default value is set to 3.2V nominal.

For cross compatibility reasons the interface should always be started up using 3V. The 3V technology SIM will operate at 5V but a 5V SIM will not operate at 3V. The supply voltage is switched to 5V if the SIM can accept that. The SIM has a bit set in a data field indicating it's capability of 3V operation.

The DATA signal between the SIM and the PSCLD can be set to operate in two different modes. One mode causes the PSCLD output to force a logic high level on the DATA line when the interface is driving a high level. In this mode the interface output is driving the DATA line actively. In the other mode the DATA line is operating like an open drain circuitry with the difference that during the transition periods high–low, low–high the interface is actively forcing the DATA line.

The advantage of this is that the DATA line is acting like an open drain, tri–state, data line but there is no problem with rise times since the data line is actively forced during the transition period. This mode is introduced to cope with data line overshoots that has been discovered during type approval testing. The present solution is to force the data line actively during the byte transmission. In the new mode the data line is not forced actively when the data to be transmitted is high.

The regulator control signal is derived from the ASIC and this signal controls the operation of the SIM power supply regulator inside PSCLD. To ensure that the powered off ASIC doesn't cause any uncontrolled operations at the SIM interface the PSCLD signals to the SIM are forced low when the PURX signal is active, low. This implementation will ensure that the SIM interface can not be activated by any external signal when PSCLD has PURX active. When PURX goes inactive the control of the interface signals are given back to the ASIC signals controlling PSCLD SIM interface operations.

The clock to the SIM can be switched off if the SIM card allows stopping of the clock. The clock can be stopped either in high or low state, determined by the card data. For cards not allowing the clock to be stopped there is a 1.083 MHz clock frequency that can be used to reduce the power consumption while the clock is running. In this case the VCO must be running all the time.

When the clock is stopped and the status of the CARDIN signal changes, battery is removed, the clock to the SIM is restarted inside the ASIC and the SIM power down sequence is performed.

To be able to handle current spikes as specified in the SIM interface specifications the SIM regulator output from PSCLD must have a ceramic capacitor off 100 nF connected between the output and ground close to the SIM interface connector. To be able to cope with the fall time requirements and the disconnected contact measurements in type approval the regulator output must be actively pulled down when the regulator is switched off. This active pull–down must work as long as the external battery is connected and the battery voltage is above the PSCLD reset level.

The SIM power on procedure is controlled by the MCU. The MCU can power up the SIM only if the CARDDETX signal is in the inactive state. Once the power up procedure has been started the ASIC takes care of that the power up procedure is performed according to ISO 7816–3.

The SIM interface uses two clock frequencies 3.25 MHz or 1.625 MHz during SIM communication. A 1.083 MHz clock is used during SIM sleep state if the clock is not allowed to be switched off. The data transfer speed in the SIM GSM session is specified to be the supplied clock frequency/372. The ASIC SIM interface supplies all the required clock frequencies as well as the required clock frequency for the UART used in the SIM interface data transmission/reception.

SIM Interface and support in D151

The signal from the BSI input from the battery is fed to D151, pin 25. This pin has a special input cell that has specific input levels to convert the BSI signal into the card detection logical control signal for the SIM interface in the ASIC. When the input voltage has been low, less than 1.5V the output from the cell will remain low until the input voltage exceeds 2.3V.

If the input voltage has been more than 2.8V the input will remain high until the input voltage has decreased to at least 1.9V. For all specified battery types the BSI voltage will stay below 2.3V. If the voltage on this pin exceeds 2.3V the card detection signal will be active and the card will be powered down. It is not possible to power up the card as long as the card detection signal is active, high.

Technical Documentation

Display Driver Interface

The display driver used in nhe–8/9 is Seiko SED1560DEB, located in UI board. The display driver has internal voltage tripler circuitry for LCD voltage generation. Capacitors C409 and C420 are used in the voltage converter. Capacitor C 404 is the filtering capacitor for the voltage generator output. Capacitors C400–C403 and C421 are filtering capacitors for the supply voltage to the display driver back plane voltages. Resistor network R416–419 forms the feedback network for setting the contrast for the display. The display driver has internal temperature compensation for the contrast.

The nhe–8/9 Base Band uses a serial interface to the Seiko LCD driver. The serial interface is designed in the ASIC. The MCU writes data into the serial interface in the ASIC and it is then transmitted to the LCD driver. The LCD driver reset is controlled by the MCU on P40. The display driver reset is dual edge active. The P40 pin on the MCU has a pull down capacitor, C154 to ensure that the LCD driver reset is low at power up. After exiting reset one of the first tasks for the MCU is to set the P40 to output and low, "0". After at least 100 us the reset signal to the display driver is taken high, "1". This rising edge reset selects 80XX type MCU interface. The serial interface setting of the driver will override this. After resetting the display driver the MCU starts the initialization procedure using the serial interface in the ASIC, D151.

The MCU first sets up the display driver interface in the ASIC for the serial driver. This enables the interface signals and sets the polarity of the chip select to the driver correct. The next step is to blank the display. This is to be done soon after the power up sequence to ensure that no garbage is output on the display. The normal display test pattern is then written to the display.

Communication with the serial driver takes place on the SCONB(5:0). The display driver requires serial data, serial clock and command/display information during the serial transfer. The display driver has it's own chip select which is active during the transfer, there are other devices on the same serial bus as well. The command/display information is transmitted on the keyboard ROW5 output. Due to the fact that the keyboard interface is used during display driver transfers the keyboard activities must be disabled during display driver communication. This means that the column output from the ASIC must be put in high impedance state not to interfere with the data transmission if keypads are pressed.

The timing required for the serial interface is provided by the ASIC and the operation of ROW5 depends upon the display driver interface initialization. For the serial interface it is used for command/display data control. The serial clock is 1.083 MHz.

The serial interface in the ASIC starts the transfer after each write operation to the output buffer. The data transferred is command or data depending upon to which address it is written in the interface. The ASIC sets the control signal on ROW5 accordingly. After that the data has been shifted out from the interface a bit is set in the interface register to tell the MCU that the interface is ready for the next byte. This transmission indicator bit is polled by the MCU and the next byte is written when the output buffer is empty.

The clock to the display driver interface in the ASIC is automatically switched on when a write operation to the interface has taken place. The MCU can force the clock to be continuously on by writing the clock on to the CTSI block. The default assumption is that the MCU forces the clock to be continuously on only when a large amount of data is to be transmitted, such as segment test at power up.

RF Module

Technical Summary

The GJ3 is the RF module of the NHE–8–9 cellular transceiver, it is a slightly modified version of the GJ8 module used in HD843. The GJ3 module carries out all the RF and system functions of the transceiver. This module works in the GSM system.

Components are located on both sides of the PWB. The RF components are located on the top end of the PWB. The both sides of the board includes high and low components.

EMI leakage is prevented by a metallized plastic shield A on side 1/8 and a meatallized plastic cover B on side 8/8. The shield A also conducts the heat out of the inner parts of the phone, thus preventing excessive temperature rise.

External Signals and Connections

Table 16. List of RF connectors

Connector Name	Code	Notes	
Antenna contact clip	9510262	For fixed helix antenna	

Main Technical Specifications

Table 17. Main technical specifications

Item	Specification
Receiver frequency band	935 960 MHz
Transmitter frequency band	890 915 MHz
Duplex spacing	45 MHz
Number of RF channels	124
Power class	4
Maximum output power	2.0 W (33 dBm)
Number of power levels	11 (phase I) / 15 (phase II)

Maximum Ratings

The maximum battery voltage should not exceed 9.5 V. Higher battery voltages may destroy the tantalum capacitors. The transmitter has a regulator circuit, which protects the power amplifier for the higher voltages.

Parameter	Value
Battery voltage	9.5 V
Power amplifier supply voltage	7.5 V
Operating temperature range	–20 +85 deg.C

Table 18. Maximum ratings

Power Distribution

All currents in the power distribution diagram are peak currents. Activity percentages in SPEECH mode are 22.5 % for RXPWR, 15.8 % for TXPWR and 100 % for SYNTHPWR. In the IDLE mode, activities are 0.36 %, 0.0 % and 1.61 %, respectively. The operation of each block is controlled independently and for example TXPWR and RXPWR are not on at the same time.

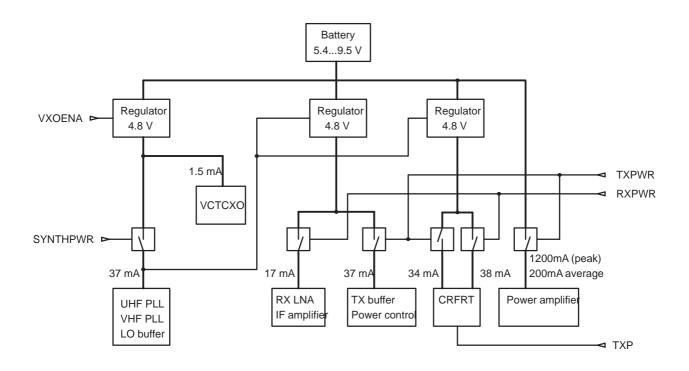


Figure 7. Power distribution diagram

Regulators

There are three regulators in the RF unit. The 1st regulator is used for the synthesizers and the VCTCXO. The 2nd regulator is used for the receiver and the transmitter discrete circuits. The 3rd regulator is for the CRFRT, integrated RF circuit. The regulators regulate the battery voltage to the fixed 4.8 V level. The receiver, synthesizer and transmitter circuits can be switched ON and OFF separately. Switching sequence timing depends on the operation mode of the phone.

Control Signals

In the following table RF current consumption can be seen with different status of the control signals.

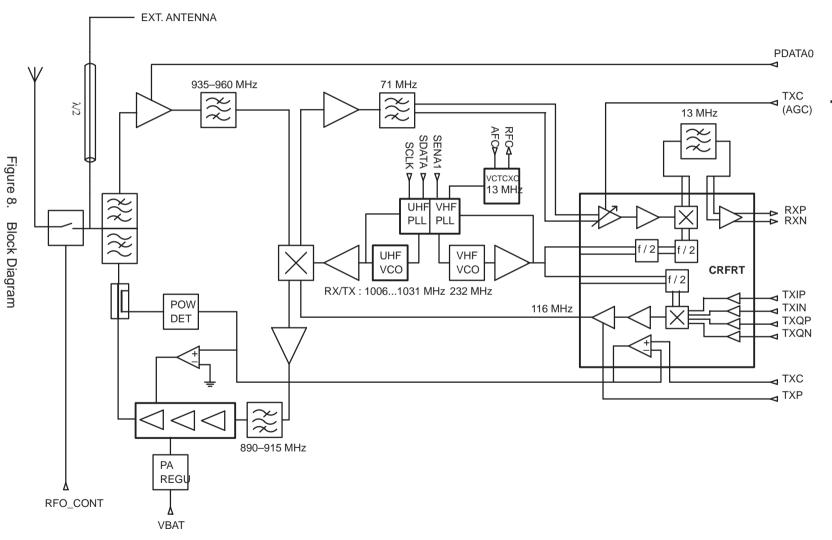

VXOENA	SYNTHPWR	RXPWR	TXPWR	ТХР	Typical load cur- rent / mA	Notes
L	L	L	L	L	0.05	Leakage cur- rent
н	L	L	L	L	1.5	VCTCXO cur- rent
н	Н	L	L	L	37	Synthesizers active
Н	Н	Н	L	L	90	Reception
Н	Н	L	Н	L	110	TX active
Н	Н	L	Н	Н	1100	Transmission

Table 19. Control Signals and Current Consumption

Table 20. Output power

Parameter	Minimum	Typical / Target	Maximum	Unit / Notes
Max. output power		33.0		dBm
Max. output power tolerance (power level 5)			+/- 2.0 +/- 2.5	dB, normal cond. dB, extreme cond.
Output power tolerance / power levels 615			+/- 3.0 +/- 4.0	dB, normal cond. dB, extreme cond.
Output power tolerance / power levels 1619 (phase II)			+/- 5.0 +/- 6.0	dB, normal cond. dB, extreme cond.
Output power control step size	0.5	2.0	3.5	dB

Technical Documentation

Receiver

The SW controlled electrical switch connects the signal from the antenna (transceiver antenna or external) to the duplex filter, which rejects the unwanted signals. The received signal is amplified by a discrete low noise preamplifier. The gain of the amplifier is controlled by the AGC control line (PDATA0). The nominal gain of 20 dB is reduced in strong field conditions by about 40 dB. After the preamplifier the signal is filtered by the SAW RF filter. The filter rejects spurious signals coming from the antenna and spurious emissions coming from the receiver unit.

The filtered signal is down converted by the single balanced diode mixer. The first IF is 71 MHz. The first local signal is generated by the UHF synthesizer.

The amplified IF signal is filtered by the SAW IF filter. The filter rejects the adjacent channel signal, intermodulating signals and the second IF image signal. After filtering, the IF signal is fed to the receiver ASIC (CRFRT), which includes the AGC amplifier and the 2nd mixer. The 2nd local signal is generated in the RF ASIC by dividing the VHF signal by four. After mixing the 2nd IF signal is filtered by the SMD 13 MHz ceramic filter and amplified by the differential amplifier of the ASIC. The differential 13 MHz signal is fed through the attenuator circuit to the RF interface circuit RFI2.

Frequency Synthesizers

The stable frequency source for the synthesizers and baseband circuits is the voltage controlled temperature compensated crystal oscillator, VCTCXO. The frequency of the VCTCXO is 13 MHz. The frequency of the oscillator is controlled by an AFC voltage, which is generated by the baseband circuits.

The operating frequency range of the UHF synthesizer is from 1006 to 1031 MHz. The UHF signal source is the VCO module. The UHF PLL locks the signal for the accurate frequency and it is used as the down conversion signal for the receiver and the up conversion signal for the transmitter.

The operating frequency of the VHF synthesizer is 232 MHz. This signal is fed to the RF ASIC (CRFRT), where it is used for the I/Q modulation and for the down conversion of the first IF. This 232 MHz signal is divided by four inside the CRFRT before using it as a local signal for the mixer.

Transmitter

The synthesized 232 MHz signal is divided by two in the I/Q modulator of the CRFRT. The TX I and Q signals are generated in the RFI2 interface circuit and they are fed differentially to the modulator. The modulated TX IF signal (116 MHz) is amplified by an AGC amplifier. In this application the gain has been set to the maximum level, because the power control has been implemented by the power amplifier.

The TX signal is generated by mixing the UHF VCO signal and the modulated TX IF signal. After mixing the slightly filtered TX signal is amplified by the power amplifier to the level of +5 dBm. The unwanted signals are filtered by the SAW RF filter.

The power amplifier module amplifies the TX signal to the used power level. The maximum output level of the amplifier is 36 dBm, typically.

The power control loop controls the output level of the power amplifier module. The power detector consists of a directional coupler and a diode rectifier. The difference of the power control signal TXGX (TXC amplified in CRFRT) and the detected voltage is amplified and used as a control voltage for the power amplifier,

The duplex filter rejects the noise on the receiver band and the harmonic products of the TX signals. The electrical switch connects the signal to the used antenna.

Receiver Characteristics

Item	Values
RX frequency range	935 960 MHz
Туре	Linear, two IFs
Intermediate frequencies	71 MHz, 13 MHz
3 dB bandwidth	+/– 100 kHz
Reference noise bandwidth	270 kHz
Sensitivity	–102 dBm, S/N ratio > 8 dB, BN=135 kHz
AGC dynamic range	94 dB, typ.
Receiver gain	65 dB (voltage gain)
RF front end gain control range	40 dB
2nd IF gain control range	57 dB
Input dynamic range	–102 –10 dBm
Gain relative accuracy in receiving band	+/- 1.5 dB
Gain relative accuracy on channel	+/- 0.4 dB

 Table 21. RF Characteristics, Receiver

Duplex filter

The duplex filter combines the transmitter and the receiver to the antenna connection. The TX filter rejects the noise power at the RX frequency band and TX harmonic signals. The RX filter rejects blocking and spurious signals coming from the antenna and also protects the receiver of the transmitter power.

Pre-amplifier

The pre–amplifier amplifies the received signal. The performance of the amplifier determines the sensitivity of the receiver.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Frequency band		935960		MHz
Supply voltage	4.5		4.8	V
Current consumption			7.0	mA
Insertion gain	16	18		dB
Noise figure			2.5	dB
Reverse isolation	15			dB
Gain reduction (PDATA0=1)		40		dB
IIP3	-10			dBm
Input VSWR (Zo=50 ohms)			2.0	
Output VSWR (Zo=50 ohms)			2.0	

Table	22.	Pre	amplifier	specifications
-------	-----	-----	-----------	----------------

RX Interstage Filter

The RX interstage filter is an SAW filter. The filter rejects spurious and blocking signals coming from the antenna and also rejects the local oscillator signal leakage.

Table	23.	RX	filter	specification
-------	-----	----	--------	---------------

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Terminating impedance		50		ohms
Operating temperature range	-25		+80	deg. C
Center frequency (fo)		947.5		MHz
Bandwidth (BW)	+/- 12.5			MHz
Insertion loss at BW			4.0	dB
Ripple at BW			1.5	dB
Return loss at BW	10.0			dB
Attenuation DC 890 MHz	35.0			dB
Attenuation 890 915 MHz	20.0			dB
Attenuation 980 1025 MHz	15.0			dB
Attenuation 1025 1500 MHz	35.0			dB

Diode mixer

The first mixer is a single balanced diode mixer. The mixer consists of a microstripline balun and a ring quad schottky diode. One diode pair is used for the receiver and the other is used for up conversion of the transmitter signal.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
RX frequency range	935		960	MHz
LO frequency range	1006		1031	MHz
IF frequency		71		MHz
Conversion loss		7.0	9.0	dB
IIP3	5.0			dBm
LO – RF isolation	15.0			dB
LO power level			3.0	dBm

Table 24. Mixer specifications

IF amplifier

The first IF bipolar transistor amplifier drives up the level of the down converted signal before filtering.

 Table 25. IF amplifier specifications

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Opertion frequency		71		MHz
Supply voltage	4.5		4.8	V
Current consumption			12.0	mA
Insertion gain	19	20		dB
Noise figure		3.0		dB
IIP3	-5.0			dBm

First IF filter

The first IF filter makes the part of the channel selectivity of the receiver. It rejects adjacent channel signals (except the 2nd adjacent). It also rejects blocking signals and the 2nd image frequency.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Center frequency, fo	71.0			MHz
Operating temperature range	-20 +80			deg.C
Input impedance	3.5 kohm // 6.9 pF			balanced
Output impedance	3.4 kohm // 6.7 pF			balanced
Insertion loss		11.5	13.5	dB

Table 26. IF filter specifications

Technical Documentation

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Group delay distortion		700	1300	ns
2 dB bandwidth	+/- 80			kHz
3 dB bandwidth	+/- 120			kHz
5 dB bandwidth			+/- 230	kHz
20 dB bandwidth			+/- 400	kHz
30 dB bandwidth			+/- 600	kHz
35 dB bandwidth			+/- 800	kHz
Spurious rejection at fo +/– 26 MHz	60			dB

Table 26. IF filter specifications (continued)

Receiver IF circuit, RX part of CRFRT

The receiver part of CRFRT consists of an AGC amplifier, a mixer and a buffer amplifier for the second IF. The mixer circuit down converts the received signal to the 13 MHz IF frequency. After second IF filter the signal is amplified and fed to baseband circuitry. The supply current can be switched OFF by an external switch.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Supply voltage	4.27	4.5	4.73	V
Supply current		38		mA
Input frequency range	45		87	MHz,
Max voltage gain before 2IF filt	47			dB
Min voltage gain before 2IF filt			-10	dB
AGC gain control slope	40	84	120	dB / V
Absolute gain inaccuracy	-4		4	dB over temp. range
Relative gain inaccuracy			0.8	dB over temp. range
Noise figure			15	dB, Max gain
Mixer output 1dB comp point		1.0		Vpp
Second IF range	2		17	MHz
Gain of the 2nd IF buffer		30		dB
Max output level after 2nd IF buffer		1.6		Vpp

Table 27.	CRFRT RX part	specification
-----------	----------------------	---------------

Second IF filter

The second IF is filtered by the ceramic filter, which makes the part of the channel selectivity of the receiver.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Center frequency (fo)		13.0		MHz
1 dB bandwidth (BW)	+/- 90			kHz
5 dB bandwidth			+/- 220	kHz
Insertion loss			6.0	dB
Group delay distortion			1500	ns at BW
Attenuation: fo +/- 400 kHz	25.0	30.0		dB
Attenuation: fo +/- 600 kHz	40.0	45.0		dB
Terminating impedance		330		ohms,
Operating temperature range	-30		+85	deg. C

Table 28. 2nd IF filter Specifications

Transmitter Characteristics

Table 29. RF Characteristics,	Transmitter
-------------------------------	-------------

Item	Values
TX frequency range	890 915 MHz
Туре	Up conversion
Intermediate frequency	116 MHz
Maximum output power	2 W (33 dBm)
Power control range	20 dB (phase I) / 28 dB (phase II)
Maximum RMS phase error	5 deg.
Maximum peak phase error	20 deg.

Modulator Circuit, TX part of the CRFRT

The modulator of the CRFRT is a quadrature modulator. The input local signal (232 MHz) is divided by two to get accurate 90 degrees phase shifted signals for the I/Q mixer. After mixing the signals are combined and amplified. The output of the IC is single ended and the level is controllable. The maximum output level is 0 dBm, typically.

Technical Documentation

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Supply voltage	4.27		4.73	V
Supply current		35		mA, norm. opera- tion
Transmit Frequency Input	Minimum	Typical / Nominal	Maximum	Unit / Notes
LO input frequency	170		400	MHz
LO input power level	-20	-10	0	dBm
LO input impedance	70	100	130	ohm
Modulator Inputs (I/Q)	Minimum	Typical / Nominal	Maximum	Unit / Notes
Input bias current			100	nA
External DC reference	2.1		2.6	V
Differential input swing	0.5	0.8	1.1	Vpp
Differential input offset volt- age	0	1.0	3.0	mV
Input impedance	200			kohms
Gain unbalance	-0.5		0.5	dB
Modulator Output	Minimum	Typical / Nominal	Maximum	Unit / Notes
Available RF power	-45.0		0.0	dBm, ZiL= 50 ohms
Suppression of 3rd order prods			-35	dB, Pout = −13 dBm
Carrier suppression	35			dB
Noise floor at saturated Pout			-125	dBm/Hz

Table 30.	Electrical	specifications,	CRFRT	TX section
-----------	------------	-----------------	-------	------------

Up conversion mixer

The mixer is a single balanced diode mixer. The mixer circuit is the same as used in the receiver. The input signal is a modulated 116 MHz signal coming from the quadrature modulator (part of the CRFRT circuit). The TX signal is filtered by using a microstripline trap for the LO signal before amplification.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Input frequency		116		MHz
LO frequency range	1006		1031	MHz
TX frequency range	890		915	MHz
Conversion loss		7.0	8.0	dB

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes	
IIP3	-5.0			dBm	
LO – RF isolation	20.0			dB	
LO power level			3.0	dBm	

Table 31. Mixer Specification (continued)

TX amplifier

The TX amplifier is a bipolar MMIC amplifier. It amplifies the up converted TX signal to the level required by the power amplifier.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Operation frequency range	890		915	MHz
Supply voltage		4.5		V
Current consumption		28.0		mA
Insertion gain	20.0			dB
Output power		5.0		dBm
Noise figure		4.0		dB
Input VSWR (Zo=50 ohms)			2.0	
Output VSWR (Zo=50 ohms)			2.0	

Table 32	ТХ	amplifier	specification
----------	----	-----------	---------------

The TX filter rejects the spurious signals generated in the up conversion mixer. It rejects the local and IF signal leakages and broad band noise, too.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Terminating impedance		50		ohms
Operating temperature range	-25		+80	deg. C
Center frequency (fo)		902.5		MHz
Bandwidth (BW)	+/- 12.5			MHz
Insertion loss at BW			4.0	dB
Ripple at BW			1.0	dB
Attenuation DC 845 MHz	30.0			dB
Attenuation 845 870 MHz	20.0			dB
Attenuation 935 980 MHz	18.0			dB
Attenuation 980 1500 MHz	30.0			dB
Attenuation 15003500 MHz	15.0			dB

Table 33. TX filte	r specification
--------------------	-----------------

Technical Documentation

System Module

Power amplifier

The power amplifier is a 3 stage module with internal matching circuits, eg. 50ohm in and out. The device amplifies the TX signal to the desired output level. It has been specified for 5.0 volt operation.

Power control circuit

The power control loop consists of a power detector, a discrete differential amplifier and a buffer amplifier. The power detector is a combination of a directional coupler and a compensated diode rectifier. The difference of the power control signal (TXGX) and the detected signal is amplified and used for the output power control.

Synthesizers

VCTCXO

The VCTCXO is a module operating at 13 MHz. The 13 MHz signal is used as a reference frequency of the synthesizers and as a clock frequency for the base band circuits.

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Operating temperature range	-25		+75	deg.C
Supply voltage	4.5		4.9	V
Supply current			2.0	mA
Output frequency		13.0		MHz
Output level		1.0		Vpp, clipped sine- wave
Harmonics			-3	dBc
Load		10 // 10		kohm // pF
Frequency stability, vs. temperature vs. supply voltage vs. load vs. aging			+/- 5.0 +/- 0.3 +/- 0.3 +/- 1.0	ppm, -25+75 deg.C ppm, 4.7 V +/- 5 % ppm, load +/- 10 % ppm, year
Nominal voltage for center freq.		2.1		V
Frequency control	+/- 9		+/-16	ppm, 2.1V +/–1.5V V
Control sensitivity			+/11	ppm/V

VHF PLL

The VHF PLL consists of the VHF VCO, PLL integrated circuit and loop filter. The output signal is used for the 2nd mixer of the receiver and for the I/Q modulator of the transmitter.

VHF VCO + buffer

The VHF VCO uses a bipolar transistor as an active element and a combination of a chip coil and varactor diode as a resonance circuit. The buffer is combined into the VCO circuit so that they use same supply current.

UHF PLL

The UHF PLL consists of an UHF VCO module, PLL circuit and a loop filter. This circuit generates the LO signal for the down and the up conversion.

UHF VCO

The UHF VCO is a module which includes an output amplifier, too.

UHF VCO buffer

The buffer amplifies the UHF VCO signal. The output signal is used as the LO signal for the single balanced diode mixer used in the down and up conversion.

PLL Circuit

The PLL is National LMX2332. The circuit is a dual frequency synthesizer including both the UHF and VHF synthesizers.

Connections

Antenna

The phone uses a fixed helix antenna. The system connector at the bottom of the phone contains a coaxial connector for the external antenna.

Antenna selection switch

The selection between external and internal antenna is done by a SW controlled electrical switch.

Parametr	Min	Nominal	Мах	Unit/Note
Insertion loss at 900 MHz		0.5	0.7	dB
Insertion loss at 1800 MHz		0.6	0.9	dB
Isolation at 900 MHz	25.0	30.0		dB
Isolation at 1800 MHz	15.0	20.0		dB
VSWR at 9001900 MHz		1.2:1	1.4:1	
1dB compression point		+38.0		dBm/input/5.0 V control

Table 35. Electrical specifications

Parts List

System Module – GJ3_09

EDMS pn 0200883 Issue 4.2 pcb version 09

ltem	Code	Description	Value	Туре
R101	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R102	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R103	1430001	Chip resistor	100	5 % 0.063 W 0603
R104	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R105	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R106	1430009	Chip resistor	220	5 % 0.063 W 0603
R107	1430734	Chip resistor	220	5 % 0.063 W 0402
R109	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R110	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R111	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R112	1430035	Chip resistor	1.0 k	5 % 0.063 W 0603
R113	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R114	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R115	1430726	Chip resistor	100	5 % 0.063 W 0402
R116	1430726	Chip resistor	100	5 % 0.063 W 0402
R117	1430726	Chip resistor	100	5 % 0.063 W 0402
R118	1825001	Chip varistor	vwm18v	vc40v 0603
R120	1825001	Chip varistor	vwm18v	vc40v 0603
R121	1825001	Chip varistor	vwm18v	vc40v 0603
R150	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R151	1430718	Chip resistor	47	5 % 0.063 W 0402
R152	1430718	Chip resistor	47	5 % 0.063 W 0402
R155	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R200	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R201	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R202	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R205	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R206	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R207	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R208	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R209	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R210	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R214	1430718	Chip resistor	47	5 % 0.063 W 0402
R215	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R216	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603
R217	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603
R218	1430718	Chip resistor	47	5 % 0.063 W 0402
R219	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603

NHE-8	/9			PAMS
System	Module			Technical Documentation
R220	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603
R221	1430718	Chip resistor	47	5 % 0.063 W 0402
R222	1430718	Chip resistor	47	5 % 0.063 W 0402
R260	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R261	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R262	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R263	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R264	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R265	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R266	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R267	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R268	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R269	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R270	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R300	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R301	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R302	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R303	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R304	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R305 R306	1430726 1430726	Chip resistor Chip resistor	100 100	5 % 0.063 W 0402 5 % 0.063 W 0402
R308	1430027	Chip resistor	2.43 k	1 % 0.063 W 0603
R309	1430027	Chip resistor	2.43 k	1 % 0.063 W 0603
R311	1430796	Chip resistor	2.45 K 47 k	5 % 0.063 W 0402
R312	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R313	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R314	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R315	1430778	Chip resistor		5 % 0.063 W 0402
R316	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R317	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R318	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R319	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R321	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R322	1430726	Chip resistor	100	5 % 0.063 W 0402
R323	1430726	Chip resistor	100	5 % 0.063 W 0402
R324	1430718	Chip resistor	47	5 % 0.063 W 0402
R326	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R327	1430718	Chip resistor	47	5 % 0.063 W 0402
R328	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R329	1430744	Chip resistor	470	5 % 0.063 W 0402
R330	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R331	1430714	Chip resistor	33	5 % 0.063 W 0402
R332	1430714	Chip resistor	33	5 % 0.063 W 0402

PAMS

Technical Documentation

5040			-	
R342	1430718	Chip resistor	47	5 % 0.063 W 0402
R343	1430744	Chip resistor	470	5 % 0.063 W 0402
R400	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R401	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R402	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R403	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R404	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R405	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R406	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R407	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R408	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R409	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R410	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R411	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R412	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R413	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R414	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R415	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R416	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R417	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R452	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R453	1430718	Chip resistor	47	5 % 0.063 W 0402
R456	1430820	Chip resistor	470 k	5 % 0.063 W 0402
R457	1800659	NTC resistor	47 k	10 % 0.12 W 0805
R458	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R500	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R501	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R502	1430728	Chip resistor	120	5 % 0.063 W 0402
R503	1430732	Chip resistor	180	5 % 0.063 W 0402
R504	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R505	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R506	1430710	Chip resistor	22	5 % 0.063 W 0402
R507	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R508	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R510	1430726	Chip resistor	100	5 % 0.063 W 0402
R511	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R512	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R513	1430734	Chip resistor	220	5 % 0.063 W 0402
R514	1430710	Chip resistor	22	5 % 0.063 W 0402
R521	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R522	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R523	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R524	1430726	Chip resistor	100	5 % 0.063 W 0402

NHE-8/9

System Module

PAMS

R525	1430700	Chip resistor	10	5 % 0.063 W 0402
R541	1430710	Chip resistor	22	5 % 0.063 W 0402
R547	1430744	Chip resistor	470	5 % 0.063 W 0402
R551	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R552	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R553	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R554	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R555	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R556	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R557	1430740	Chip resistor	330	5 % 0.063 W 0402
R558	1430700	Chip resistor	10	5 % 0.063 W 0402
R559	1430738	Chip resistor	270	5 % 0.063 W 0402
R560	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R562	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R563	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R564	1430734	Chip resistor	220	5 % 0.063 W 0402
R565	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R568	1430734	Chip resistor	220	5 % 0.063 W 0402
R570	1430726	Chip resistor	100	5 % 0.063 W 0402
R571	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R572	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R573	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R574	1430734	Chip resistor	220	5 % 0.063 W 0402
R576	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R577	1430794	Chip resistor	39 k	5 % 0.063 W 0402
R578	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R580	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R583	1430776	Chip resistor	8.2 k	5 % 0.063 W 0402
R584	1430766	Chip resistor	3.9 k	5 % 0.063 W 0402
R585	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R586	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R587	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R588	1430776	Chip resistor	8.2 k	5 % 0.063 W 0402
R589	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R591	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R592	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R594	1430738	Chip resistor	270	5 % 0.063 W 0402
R595	1430700	Chip resistor	10	5 % 0.063 W 0402
R596	1430726	Chip resistor	100	5 % 0.063 W 0402
R597	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R598	1430738	Chip resistor	270	5 % 0.063 W 0402
R601	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R602	1430778	Chip resistor	10 k	5 % 0.063 W 0402

PAMS

Technical Documentation

Daga	4 40000 4		4001	
R603	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R604	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R605	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R606	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R607	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R608	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R609	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R610	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R611	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R612	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R613	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R614	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R701	1430734	Chip resistor	220	5 % 0.063 W 0402
R702	1430734	Chip resistor	220	5 % 0.063 W 0402
R703	1430710	Chip resistor	22	5 % 0.063 W 0402
R710	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R711	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R712	1430740	Chip resistor	330	5 % 0.063 W 0402
R713	1430700	Chip resistor	10	5 % 0.063 W 0402
R714	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R715	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R716	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R717	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R718	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R719	1430786	Chip resistor	18 k	5 % 0.063 W 0402
R723	1430734	Chip resistor	220	5 % 0.063 W 0402
R724	1430710	Chip resistor	22	5 % 0.063 W 0402
R725	1430734	Chip resistor	220	5 % 0.063 W 0402
R726	1430734	Chip resistor	220	5 % 0.063 W 0402
R727	1430814	Chip resistor	270 k	5 % 0.063 W 0402
R728	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R729	1800659	NTC resistor	47 k	10 % 0.12 W 0805
R730	1430820	Chip resistor	470 k	5 % 0.063 W 0402
R731	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R741	1430710	Chip resistor	22	5 % 0.063 W 0402
R749	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R781	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R782	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R783	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R784	1430726	Chip resistor	100	5 % 0.063 W 0402
R790	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R791	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R792	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402

System	n Module			Technical Do
R794	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R795	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R797	1430764	Chip resistor	2.2 k 3.3 k	5 % 0.063 W 0402
R800	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R801	1430732	Chip resistor	180	5 % 0.063 W 0402
R808	1430734	Chip resistor	220	5 % 0.063 W 0402
R820	1430766	Chip resistor	3.9 k	5 % 0.063 W 0402
R821	1430766	Chip resistor	3.9 k	5 % 0.063 W 0402
R822	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R823	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R824	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R825	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R827	1430780	Chip resistor	12 k	5 % 0.063 W 0402
R828	1430780	Chip resistor	12 k	5 % 0.063 W 0402
R829	1430710	Chip resistor	22	5 % 0.063 W 0402
R830	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R831	1430710	Chip resistor	22	5 % 0.063 W 0402
R832	1430710	Chip resistor	22	5 % 0.063 W 0402
R833	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R834	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R840	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R841	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R842	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R843	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R844	1430734	Chip resistor	220	5 % 0.063 W 0402
R845	1430710	Chip resistor	22	5 % 0.063 W 0402
R847	1430710	Chip resistor	22	5 % 0.063 W 0402
C101	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C102	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C103	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C104	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C105	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C106	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C107	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C108	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C110	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C111 C112	2320756 2320546	Ceramic cap. Ceramic cap.	3.3 n 27 n	10 % 50 V 0402 5 % 50 V 0402
C112	2320540	Ceramic cap.	27 p 22 p	5 % 50 V 0402
C150	2610200	Tantalum cap.	22 p 2.2 u	20 % 2.0x1.3x1.2
C150	2320620	Ceramic cap.	2.2 u 10 n	5 % 16 V 0402
C152	2320560	Ceramic cap.	1011 100 p	5 % 50 V 0402
C152	2320500	Ceramic cap.	100 p	5 % 50 V 0402
0100	2020000	ocianilo cap.	100 P	

NHE-8/9

Technical Documentation

PAMS		4. ee.		NHE
rechnic	al Documenta	tion		System Mo
C154	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C155	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C156	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C157	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C158	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C159	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C160	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C161	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C162	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C163	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C164	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C165	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C166	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C167	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C168	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C169	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C170	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C200	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C201	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C202	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C203	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C205	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C206	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C207	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C208	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C209	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C210	2320131	Ceramic cap.	33 n	10 % 16 V 0603
C211	2320131	Ceramic cap.	33 n	10 % 16 V 0603
C212	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C213	2320588	Ceramic cap.	1.5 n	5 % 50 V 0402
C215	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C216	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C217	2320588	Ceramic cap.	1.5 n	5 % 50 V 0402
C218	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C219	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C220	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C221	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C223	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C225	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C226	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C250	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C251	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C252	2320560	Ceramic cap.	100 p	5 % 50 V 0402

odule

NHE-8/9				
System Module Technical Documentation				
C253	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C254	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C255	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C256	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C257	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C258	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C259	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C260	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C300	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C301	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C302	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C303	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C304	2309570	Ceramic cap.		Y5 V 1206
C305	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C306	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C307	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C308	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C309	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C310	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C311	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C312	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C313	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C314	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C315	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C316	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C317	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C318	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C319	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C320	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C321	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C322	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C323	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C324	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C325	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C326	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C329	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C330	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C331	2309570	Ceramic cap.		Y5 V 1206
C332	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C333	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C335	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C336	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C337	2320110	Ceramic cap.	10 n	10 % 50 V 0603

PAMS				NHE-8/9
Technical Documentation			System Module	
C338	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C339	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C340	2610125	Tantalum cap.	68 u	20 % 16 V 7.3x4.3x2.9
C400	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C401	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C402	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C403	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C404	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C405	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C406	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C407	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C450	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C452	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C454	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C456	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C457	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C458	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C459	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C460	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C500	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C501	2320514	Ceramic cap.	1.2 p	0.25 % 50 V 0402
C502	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C503	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C504	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C505	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C506	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C513	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C514	2320546	Ceramic cap.	•	5 % 50 V 0402
C515	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C516	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C517	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C518	2320522	Ceramic cap.	2.7 p	0.25 % 50 V 0402
C520	2320536	Ceramic cap.	10 p 27 p	5 % 50 V 0402
C522	2320546	Ceramic cap.	27 p 100 p	5 % 50 V 0402
C523	2320560	Ceramic cap.	100 p	5 % 50 V 0402 10 % 50 V 0402
C525	2320756	Ceramic cap.	3.3 n	
C526 C541	2320744 2320756	Ceramic cap. Ceramic cap.	1.0 n 3.3 n	10 % 50 V 0402 10 % 50 V 0402
C541	2320756	Ceramic cap.	з.з п 220 р	5 % 50 V 0402
C545 C546	2320568	Ceramic cap.	220 p 220 p	5 % 50 V 0402
C540	2320508	Ceramic cap.	220 p 12 p	5 % 50 V 0402
C552	23205560	Ceramic cap.	12 p 100 p	5 % 50 V 0402
C552	2320560	Ceramic cap.	100 p 100 p	5 % 50 V 0402
0000	2020000	Gerannic Cap.	100 p	J /0 JU V U4UZ

NHE-8	/9			PAMS
System	Module			Technical Documentation
C554	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C555	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C556	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C557	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C558	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C559	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C560	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C561	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C562	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C563	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C564	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C568	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C569	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C570	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C571	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C572	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C573	2320604	Ceramic cap.	18 p	5 % 50 V 0402
C574	2320568	Ceramic cap.	220 p	5 % 50 V 0402
C590	2320546	Ceramic cap.	27 p 27 p	5 % 50 V 0402
C591 C593	2320546 2320546	Ceramic cap. Ceramic cap.	27 p 27 p	5 % 50 V 0402 5 % 50 V 0402
C595	2320540	Ceramic cap.	27 p 27 p	5 % 50 V 0402
C601	2604329	Tantalum cap.	27 ρ 4.7 u	20 % 10 V 3.5x2.8x1.9
C602	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C603	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C604	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C605	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C608	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C711	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C712	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402
C713	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402
C714	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C715	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C716	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C719	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C720	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C723	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C724	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C727	2320560	Ceramic cap.	100 p 27 p	5 % 50 V 0402
C728	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C729 C730	2604209 2320728	Tantalum cap. Ceramic cap.	1.0 u 220 p	20 % 16 V 3.2x1.6x1.6 10 % 50 V 0402
C730 C731	2320728	Ceramic cap.	220 p 1.0 n	5 % 50 V 0402
0/31	2020004	Gerannic Cap.	1.011	J /0 JU V UHUZ

Technical Documentation

NHE-8/9

_		_		
C735	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C746	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C748	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C780	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C781	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C782	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C784	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C800	2604079	Tantalum cap.	0.22 u	20 % 35 V 3.2x1.6x1.6
C806	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C809	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C820	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C821	2310209	Ceramic cap.	2.2 n	5 % 50 V 1206
C822	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C823	2310248	Ceramic cap.	4.7 n	5 % 50 V 1206
C824	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C825	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402
C826	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402
C828	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C829	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C830	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C831	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C832	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C833	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C834	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C840	2320518	Ceramic cap.	1.8 p	0.25 % 50 V 0402
C841	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C842	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C843	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C844	2320604	Ceramic cap.	18 p	5 % 50 V 0402
C845	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C846	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C847	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402
C849	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C850	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C851	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C854	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C862	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402
C863	2320546	Ceramic cap.	27 p	5 % 50 V 0402
L100	3641262	Ferrite bead	30r/100n	nhz 2a 1206
L101	3641262	Ferrite bead	30r/100n	nhz 2a 1206
L102	3640035	Filt z>450r/100	m 0r7max	0.2a 0603
L103	3640035	Filt z>450r/100	m 0r7max	0.2a 0603
L104	3640035	Filt z>450r/100	m 0r7max	0.2a 0603

NHE-8	3/9				PAMS
System	n Module			Techni	cal Documentation
L105	3640035	Filt z>450r/100	Om Or7max	x 0.2a 0603	0603
L106	3640035	Filt z>450r/100	Om Or7max	x 0.2a 0603	0603
L107	3641262	Ferrite bead 3	0r/100mhz	z 2a 1206	1206
L108	3641262	Ferrite bead 3	0r/100mhz	z 2a 1206	1206
L150	3640035	Filt z>450r/100	Om Or7max	x 0.2a 0603	0603
L152	3640035	Filt z>450r/100			0603
L153	3640035	Filt z>450r/100	0m 0r7ma	x 0.2a 0603	0603
L203	3640035	Filt z>450r/100			0603
L204	3640035	Filt z>450r/100			0603
L205	3640035	Filt z>450r/100			0603
L301	3641262	Ferrite bead 3			1206
L302	3641262	Ferrite bead 3			1206
L306	3640035	Filt z>450r/100			0603
L311	3640011	Filt z>600r/100			0805
L312	3640011	Filt z>600r/100			0805
L451	3640035	Filt z>450r/100			0603
L520	3643023	Chip coil	68 n	5 % Q=40/200	
L521	3643037	Chip coil	180 n	5 % Q=35/100	
L522	3643039	Chip coil	220 n	5 % Q=35/100	
L523 L524	3608326 3608326	Chip coil Chip coil	330 n 330 n	5 % Q=33/50 N 5 % Q=33/50 N	
L524 L543	3643039	Chip coil	220 n	5 % Q=35/100	
L543	3643039	Chip coil	220 n 220 n	5 % Q=35/100	
L545	3643037	Chip coil	180 n	5 % Q=35/100	
L551	3643021	Chip coil	47 n		
L709	3643023	Chip coil	68 n		
L710	3643023	Chip coil	68 n		
L711	3643003	Chip coil	12 n		
L712	3641262	Ferrite bead		mhz 2a 1206	
L800	3641324	Chip coil	10 u		2 MHz 1008
L840	3643023	Chip coil	68 n	5 % Q=40/200	MHz 0805
L841	3643021	Chip coil	47 n	5 % Q=40/200	MHz 0805
B150	4510003	Crystal	32.768 l	< +-20PPM 8x3.8	3
G800	4352937	Vco	1006–10	031mhz 4.5v/10m	a smd
G801	4510133	VCTCXO	13.00 M	+-5PPM 4.7V 2	2MA
Z500	4512061	Dupl	890–91	5/935–960mhz	20x14
Z505	4510065	Saw filter	947.5+-	-12.5 M 4X4	
Z541	4511026	Saw filter	71+–0.0	8 M 14.2>	(8.4
Z551	4510009	Cer.filt	13+–0.0	9mhz 330r 7.3x3	3
Z714	4510067	Saw filter		-12.5 M 4X4	
V100	1825007	Chip varistor		vc39v 1210	
V200	4200917	Transistor			/ 100 mA SOT23
V301	4110130	Zener diode	BZX84	2 % 5.1 V 0.3 V	V SOT23

PAMS			NHE-8/9
Technic	al Documenta	tion	System Module
V302	4200917	Transistor	BC848B/BCW32 npn 30V 100 mA SOT23
V303	4200917	Transistor	BC848B/BCW32 npn 30V 100 mA SOT23
V304	4210020	Transistor	BCP69–25 pnp 20V 1A SOT223
V305	4115804	Schottky diode	PRLL5817 20 V 1 A SOD87
V306	4210020	Transistor	BCP69–25 pnp 20V 1A SOT223
V307	4210050	Transistor	DTA114EE pnp RBV EM3
V308	4210052	Transistor	DTC114EE npn RBV EM3
V309	4200917	Transistor	BC848B/BCW32 npn 30 V 100 mA SOT23
V310	4210020		BCP69–25 pnp 20 V 1 A SOT223
V311	4200917		BC848B/BCW32 npn 30 V 100 mA SOT23
V501	4210074	Transistor	BFP420 npn 4. V SOT343
V505	4219922	Transistor x 2	UM6
V511	4110083	Schdix4 bat15–0	0
V512	4210011		BFS505 npn 15V 18mA SOT323
V520	4210066		BFR93AW npn 12V 35mA SOT323
V580	4219922	Transistor x 2	UM6
V590	4219922	Transistor x 2	UM6
V591	4210052		DTC114EE npn RBV EM3
V592	4112464		4 200v 0.1a sot23 SOT23
V602	4210054	Transistor Transistor x 2	FMMT589 pnp 30V 1A SOT23
V603	4219922		
V604 V606	4210054 4219922	Transistor Transistor x 2	FMMT589 pnp 30V 1A SOT23 UM6
V608 V607	4219922		
V607 V608	4210034		FMMT589 pnp 30V 1A SOT23 BC848B/BCW32 npn 30V 100mA SOT23
V008 V711	4219904		UMX1 npn 40 V SOT363
V712	4219908		UMT1 pnp 40 V SOT363
V780	4110014		BAS70–07 70V 15mA SOT143
V790	4219904		UMX1 npn 40V SOT363
V791	421N007		SI9433DY p-ch 20V 4.4A SO8S
V830	4200917		BC848B/BCW32 npn 30V 100mA SOT23
V840	4219903		BFM505 npn 20V 20V 18mA SOT363
V842	4110018		BB135 30V SOD323
D150	4340307	IC, MCU	TQFP80
D151	4370119	Cf70131 gsm/pc	n asic bart sqfp144
D152	4370229	IC, tms320lc541	3v gj6 sqfp100 DSP
D400	4340213	IC, flash1mx8 15	50ns 3v tsop E28F008
D402	4343280	IC, EEPROM	2kx8 bit SO8S
D403	4340333	IC, SRAM	TSOP32
D404	4340149	IC, SRAM	TSOP28
D405	4340149	IC, SRAM	TSOP28
N200	4340131	St5090 audio co	dec tqfp44
N300	4370223	Stt261c pscld_e	pw supply tqfp44

NHE-8	/9	PAMS
System	Module	Technical Documentation
N450	4370207	St7522 rfi2 v2.2 tdma codec gfp64
N451	4340139	IC, regulator TK11245AM 0.22 A SSO6
N551	4370091	Crfrt_st tx.mod+rxif+pwc sqfp44
N601	4340081	IC, regulator TK11248AM 180mA SS06
N602	4340081	IC, regulator TK11248AM 180mA SS06
N603	4340081	IC, regulator TK11248AM 180mA SS06
N710	4340077	IC, 1.5ghz w/b 30db/1ghz auPC2710T AMP
N711	435J001	IC, pow.amp. >4.8V 3.8W E–GSM
N820	4340147	IC, 2xsynth1.2g/510mhz ssop LMX2332 SSOP20
X100	5469007	Syst.conn 12af+jack+dc dct2 smd
X101	540P000	2x16pole board to board spr. conn
X102	5409033	Sim card reader ccm04–5004 2x3smd
X500	9780172	Antenna cable w500 dmd00071
X501	9510262	Antenna clip 4D25516 NHE–6
	9854162	PC board GJ3 175.9x133.0x1.0 m8 3/pa

Technical Documentation

System Module – GJ3_10 EDMS pn 0200883 Issue 5.4 pcb version 09

ltem	Code	Description	Value	Туре
R101	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R102	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R103	1430001	Chip resistor	100	5 % 0.063 W 0603
R104	1430778	•	10 k	5 % 0.063 W 0402
R105	1430770		4.7 k	5 % 0.063 W 0402
R106		•	220	5 % 0.063 W 0603
R107	1430734	•	220	5 % 0.063 W 0402
R109		Chip resistor	1.0 k	5 % 0.063 W 0402
R110		Chip resistor	1.0 k	5 % 0.063 W 0402
R111	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R112	1430035	Chip resistor	1.0 k	5 % 0.063 W 0603
R113		Chip resistor	33 k	5 % 0.063 W 0402
R114	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R115	1430726	Chip resistor	100	5 % 0.063 W 0402
R116	1430726	Chip resistor	100	5 % 0.063 W 0402
R117	1430726	Chip resistor	100	5 % 0.063 W 0402
R118	1825001	Chip varistor vwm1	8v vc40v	0603
R120	1825001	Chip varistor vwm1	8v vc40v	0603
R121	1825001	Chip varistor vwm1	8v vc40v	0603
R150	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R151	1430718	Chip resistor	47	5 % 0.063 W 0402
R152	1430718	Chip resistor	47	5 % 0.063 W 0402
R155	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R200	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R201	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R202	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R205	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R206	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R207	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R208	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R209	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R210	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R214	1430718	Chip resistor	47	5 % 0.063 W 0402
R215	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R216	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603
R217		Chip resistor	12.1 k	0.5 % 0.063 W 0603
R218	1430718	Chip resistor	47	5 % 0.063 W 0402
R219	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603
R220	1430029	Chip resistor	12.1 k	0.5 % 0.063 W 0603

System Module

		_		
R221		Chip resistor	47	5 % 0.063 W 0402
R222		Chip resistor	47	5 % 0.063 W 0402
R260		Chip resistor	2.2 k	5 % 0.063 W 0402
R261	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R262	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R263	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R264	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R265	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R266	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R267	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R268	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R269	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R270	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R300	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R301	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R302	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R303	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R304	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R305	1430726	Chip resistor	100	5 % 0.063 W 0402
R306	1430726	Chip resistor	100	5 % 0.063 W 0402
R308	1430027	Chip resistor	2.43 k	1 % 0.063 W 0603
R309	1430027	Chip resistor	2.43 k	1 % 0.063 W 0603
R311	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R312	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R313	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R314	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R315	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R316	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R317	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R318	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R319	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R321	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R322	1430726	Chip resistor	100	5 % 0.063 W 0402
R323	1430726	Chip resistor	100	5 % 0.063 W 0402
R324	1430718	Chip resistor	47	5 % 0.063 W 0402
R326	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R327	1430718	Chip resistor	47	5 % 0.063 W 0402
R328	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R329	1430744	Chip resistor	470	5 % 0.063 W 0402
R330	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R331	1430714	Chip resistor	33	5 % 0.063 W 0402
R332	1430714	Chip resistor	33	5 % 0.063 W 0402
R342	1430718	Chip resistor	47	5 % 0.063 W 0402

Technical Documentation

5.0.40				
R343		Chip resistor	470	5 % 0.063 W 0402
R400		Chip resistor	100 k	5 % 0.063 W 0402
R401		Chip resistor	100 k	5 % 0.063 W 0402
R402		Chip resistor	100 k	5 % 0.063 W 0402
R403		Chip resistor	100 k	5 % 0.063 W 0402
R404	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R405	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R406	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R407	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R408	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R409	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R410	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R411	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R412	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R413	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R414	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R415	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R416	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R417	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R452	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R453	1430718	Chip resistor	47	5 % 0.063 W 0402
R456	1430820	Chip resistor	470 k	5 % 0.063 W 0402
R457	1800659	NTC resistor	47 k	10 % 0.12 W 0805
R458	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R500	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R501	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R502	1430728	Chip resistor	120	5 % 0.063 W 0402
R503	1430732	Chip resistor	180	5 % 0.063 W 0402
R504	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R505	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R506	1430710	Chip resistor	22	5 % 0.063 W 0402
R507	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R508	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R510	1430726	Chip resistor	100	5 % 0.063 W 0402
R511	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R512	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R513	1430734	Chip resistor	220	5 % 0.063 W 0402
R514	1430710	Chip resistor	22	5 % 0.063 W 0402
R521	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R522	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R523	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R524	1430726	Chip resistor	100	5 % 0.063 W 0402
R525	1430700	Chip resistor	10	5 % 0.063 W 0402

System Module

R541	1430710	Chip resistor	22	5 % 0.063 W 0402
R547	1430744	Chip resistor	470	5 % 0.063 W 0402
R551	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R552	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R553	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R554	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R555	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R556	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R557	1430740	Chip resistor	330	5 % 0.063 W 0402
R558	1430700	Chip resistor	10	5 % 0.063 W 0402
R559	1430738	Chip resistor	270	5 % 0.063 W 0402
R560	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R562	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R563	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R564	1430734	Chip resistor	220	5 % 0.063 W 0402
R565	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R568	1430734	Chip resistor	220	5 % 0.063 W 0402
R570	1430726	Chip resistor	100	5 % 0.063 W 0402
R571	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R572	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R573	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R574	1430734	Chip resistor	220	5 % 0.063 W 0402
R576	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R577	1430794	Chip resistor	39 k	5 % 0.063 W 0402
R578	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R580	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R583	1430776	Chip resistor	8.2 k	5 % 0.063 W 0402
R584	1430766	Chip resistor	3.9 k	5 % 0.063 W 0402
R585	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R586	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R587	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R588	1430776	Chip resistor	8.2 k	5 % 0.063 W 0402
R589	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R591	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R592	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R594	1430738	Chip resistor	270	5 % 0.063 W 0402
R595	1430700	Chip resistor	10	5 % 0.063 W 0402
R596	1430726	Chip resistor	100	5 % 0.063 W 0402
R597	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R598	1430738	Chip resistor	270	5 % 0.063 W 0402
R601	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R602		Chip resistor	10 k	5 % 0.063 W 0402
R603	1430804	Chip resistor	100 k	5 % 0.063 W 0402

Technical Documentation

		_		
R604		Chip resistor	10 k	5 % 0.063 W 0402
R605		Chip resistor	4.7 k	5 % 0.063 W 0402
R606	1430778		10 k	5 % 0.063 W 0402
R607	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R608	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R609	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R610	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R611	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R612	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R613	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R614	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R701	1430734	Chip resistor	220	5 % 0.063 W 0402
R702	1430734	Chip resistor	220	5 % 0.063 W 0402
R703	1430710	Chip resistor	22	5 % 0.063 W 0402
R710	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R711	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R712	1430740	Chip resistor	330	5 % 0.063 W 0402
R713	1430700	Chip resistor	10	5 % 0.063 W 0402
R714	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R715	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R716	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R717	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R718	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R719	1430786	Chip resistor	18 k	5 % 0.063 W 0402
R723	1430734	Chip resistor	220	5 % 0.063 W 0402
R724	1430710	Chip resistor	22	5 % 0.063 W 0402
R725	1430734	Chip resistor	220	5 % 0.063 W 0402
R726	1430734	Chip resistor	220	5 % 0.063 W 0402
R727	1430814	Chip resistor	270 k	5 % 0.063 W 0402
R728	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R729	1800659	NTC resistor	47 k	10 % 0.12 W 0805
R730	1430820	Chip resistor	470 k	5 % 0.063 W 0402
R731	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R741	1430710	Chip resistor	22	5 % 0.063 W 0402
R749	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R781	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R782	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R783	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R784	1430726	Chip resistor	100	5 % 0.063 W 0402
R790	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R791	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R792		Chip resistor	1.0 k	5 % 0.063 W 0402
R794		Chip resistor	3.3 k	5 % 0.063 W 0402

System Module

R795	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R797	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R800	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R801	1430732	Chip resistor	180	5 % 0.063 W 0402
R808	1430734	Chip resistor	220	5 % 0.063 W 0402
R820	1430766	Chip resistor	3.9 k	5 % 0.063 W 0402
R821	1430766	Chip resistor	3.9 k	5 % 0.063 W 0402
R822	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R823	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R824	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R825	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R827	1430780	Chip resistor	12 k	5 % 0.063 W 0402
R828	1430780	Chip resistor	12 k	5 % 0.063 W 0402
R829	1430710	Chip resistor	22	5 % 0.063 W 0402
R830	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R831	1430710	Chip resistor	22	5 % 0.063 W 0402
R832	1430710	Chip resistor	22	5 % 0.063 W 0402
R833	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R834	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R840	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R841	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R842	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R843	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R844	1430734	Chip resistor	220	5 % 0.063 W 0402
R845	1430710	Chip resistor	22	5 % 0.063 W 0402
R847	1430710	Chip resistor	22	5 % 0.063 W 0402
C101	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C102	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C103	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C104	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C105	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C106	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C107	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C108	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C110	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C111	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C112	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C113	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C150	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C151		Ceramic cap.	10 n	5 % 16 V 0402
C152	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C153		Ceramic cap.	100 p	5 % 50 V 0402
C154		Ceramic cap.	100 p	5 % 50 V 0402
		-	-	

Technical Documentation

NHE-8/9

0455	0040000	Tantahung ann	0.0	00.0/ 0.0-4.0-4.0
C155		Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C156		Ceramic cap.	10 n	5 % 16 V 0402
C157		Ceramic cap.	100 p	5 % 50 V 0402
C158		Ceramic cap.	12 p	5 % 50 V 0402
C159		Ceramic cap.	12 p	5 % 50 V 0402
C160		Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C161		Ceramic cap.	10 n	5 % 16 V 0402
C162		Ceramic cap.	100 p	5 % 50 V 0402
C163		Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C164		Ceramic cap.	10 n	5 % 16 V 0402
C165		Ceramic cap.	100 p	5 % 50 V 0402
C166		Ceramic cap.	10 n	5 % 16 V 0402
C167		Ceramic cap.	10 n	5 % 16 V 0402
C168	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C169	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C170	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C200	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C201	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C202	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C203	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C205	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C206	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C207	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C208	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C209	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C210	2320131	Ceramic cap.	33 n	10 % 16 V 0603
C211	2320131	Ceramic cap.	33 n	10 % 16 V 0603
C212	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C213	2320588	Ceramic cap.	1.5 n	5 % 50 V 0402
C215	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C216	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C217	2320588	Ceramic cap.	1.5 n	5 % 50 V 0402
C218	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C219	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C220	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C221	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C223	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C225	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C226	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C250	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C251		Ceramic cap.	100 p	5 % 50 V 0402
C252		Ceramic cap.	100 p	5 % 50 V 0402
C253		Ceramic cap.	100 p	5 % 50 V 0402
	-		'	

System Module

C254		Ceramic cap.	100 p	5 % 50 V 0402
C255		Ceramic cap.	100 p	5 % 50 V 0402
C256		Ceramic cap.	100 p	5 % 50 V 0402
C257	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C258	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C259	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C260	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C300	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C301	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C302	2320546	Ceramic cap.	27 р	5 % 50 V 0402
C303	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C304	2309570	Ceramic cap.		Y5 V 1206
C305	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C306	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C307	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C308	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C309	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C310	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C311	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C312	2320546	Ceramic cap.	27 р	5 % 50 V 0402
C313	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C314	2320546	Ceramic cap.	27 р	5 % 50 V 0402
C315	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C316	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C317	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C318	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C319	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C320	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C321	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C322	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C323	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C324	2610005	Tantalum cap.	10 u	20 % 16 V 3.5x2.8x1.9
C325	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C326	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C329	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C330	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C331	2309570	Ceramic cap.		Y5 V 1206
C332	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C333	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C335	2320107	Ceramic cap.	10 n	5 % 50 V 0603
C336	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C337	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C338	2320546	Ceramic cap.	27 p	5 % 50 V 0402

Technical Documentation

			_	
C339		Ceramic cap.	27 p	5 % 50 V 0402
C340		Tantalum cap.	68 u	20 % 16 V 7.3x4.3x2.9
C400		Ceramic cap.	10 n	5 % 16 V 0402
C401		Ceramic cap.	10 n	5 % 16 V 0402
C402		Ceramic cap.	10 n	5 % 16 V 0402
C403	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C404	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C405	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C406	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C407	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C450	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C452	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C454	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C456	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2
C457	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C458	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C459	2320620	Ceramic cap.	10 n	5 % 16 V 0402
C460	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C500	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C501	2320514	Ceramic cap.	1.2 p	0.25 % 50 V 0402
C502	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C503	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C504	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C505	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C506	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C513	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C514	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C515	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C516	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C517	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C518	2320522	Ceramic cap.	2.7 р	0.25 % 50 V 0402
C520	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C522	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C523	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C525	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C526	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C541	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C545	2320568	Ceramic cap.	220 p	5 % 50 V 0402
C546	2320568	Ceramic cap.	220 p	5 % 50 V 0402
C551	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C552	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C553	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C554	2320560	Ceramic cap.	100 p	5 % 50 V 0402

System Module

C555		Ceramic cap.	100 p	5 % 50 V 0402
C556		Ceramic cap.	2.2 n	10 % 50 V 0402
C557	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C558	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C559	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C560	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C561	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C562	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C563	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C564	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C568	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C569	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C570	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C571	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C572	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C573	2320604	Ceramic cap.	18 p	5 % 50 V 0402
C574	2320568	Ceramic cap.	220 p	5 % 50 V 0402
C590	2320546	Ceramic cap.	27 р	5 % 50 V 0402
C591	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C593	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C595	2320546	Ceramic cap.	27 р	5 % 50 V 0402
C601	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C602	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C603	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C604	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C605	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C608	2320752	Ceramic cap.	2.2 n	10 % 50 V 0402
C711	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C712	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402
C713	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402
C714	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C715	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C716	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C719	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C720	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C723	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C724	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C727	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C728	2320546	Ceramic cap.	27 р	5 % 50 V 0402
C729	2604209	Tantalum cap.	1.0 u	20 % 16 V 3.2x1.6x1.6
C730	2320728	Ceramic cap.	220 p	10 % 50 V 0402
C731	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C735	2320620	Ceramic cap.	10 n	5 % 16 V 0402

Technical Documentation

0740	0040704	0	100 -			
C746		Ceramic cap.	100 n	10 % 25 V 0805		
C748		Ceramic cap.	1.0 n	5 % 50 V 0402		
C780				0.25 % 50 V 0402		
C781		Ceramic cap.	27 p	5 % 50 V 0402		
C782		Ceramic cap.	27 p	5 % 50 V 0402		
C784		Ceramic cap.	3.3 n	10 % 50 V 0402		
C800		Tantalum cap.	0.22 u	20 % 35 V 3.2x1.6x1.6		
C806		Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2		
C809		Ceramic cap.	1.0 n	10 % 50 V 0402		
C820		Ceramic cap.	100 p	5 % 50 V 0402		
C821		Ceramic cap.	2.2 n	5 % 50 V 1206		
C822	2320560	Ceramic cap.	100 p	5 % 50 V 0402		
C823		Ceramic cap.	4.7 n	5 % 50 V 1206		
C824		Ceramic cap.	100 p	5 % 50 V 0402		
C825	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402		
C826	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402		
C828	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2		
C829	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402		
C830	2320560	Ceramic cap.	100 p	5 % 50 V 0402		
C831	2610200	Tantalum cap.	2.2 u	20 % 2.0x1.3x1.2		
C832	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402		
C833	2320560	Ceramic cap.	100 p	5 % 50 V 0402		
C834	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402		
C840	2320518	Ceramic cap.	1.8 p	0.25 % 50 V 0402		
C841	2610100	Tantalum cap.	Tantalum cap. 1 u 20 % 10 V 2.0x1.3			
C842	2320560	Ceramic cap.	100 p	5 % 50 V 0402		
C843	2320546	Ceramic cap.	27 р	5 % 50 V 0402		
C844	2320604	Ceramic cap.	18 p	5 % 50 V 0402		
C845	2320546	Ceramic cap.	27 р	5 % 50 V 0402		
C846	2320536	Ceramic cap.	10 p	5 % 50 V 0402		
C847	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402		
C849	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402		
C850	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402		
C851	2320538	Ceramic cap.	12 p	5 % 50 V 0402		
C854	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402		
C862	2320532	Ceramic cap.	6.8 p	0.25 % 50 V 0402		
C863	2320546	Ceramic cap.	27 p	5 % 50 V 0402		
L100	3641262	Ferrite bead 30r/100mhz 2a				
L101	3641262	Ferrite bead 30r/100mhz 2a				
L102	3640035	Filt z>450r/100m 0r7max 0.2a				
L103	3640035	Filt z>450r/100m 0r7max 0.2a				
L104	3640035	Filt z>450r/100m 0r7max 0.2a				
L105	3640035	Filt z>450r/100m 0r7max 0.2a				

L106	3640035	Filt z>450r/100m 0r7	max 0.2a	
L107	3641262	Ferrite bead 30r/100	mhz 2a	
L108	3641262	Ferrite bead 30r/100	mhz 2a	
L150	3640035	Filt z>450r/100m 0r7	max 0.2a	
L152	3640035	Filt z>450r/100m 0r7	'max 0.2a	
L153	3640035	Filt z>450r/100m 0r7	max 0.2a	
L203	3640035	Filt z>450r/100m 0r7	max 0.2a	
L204	3640035	Filt z>450r/100m 0r7	max 0.2a	
L205	3640035	Filt z>450r/100m 0r7	'max 0.2a	
L301	3641262	Ferrite bead 30r/100	mhz 2a	
L302	3641262	Ferrite bead 30r/100	mhz 2a	
L306	3640035	Filt z>450r/100m 0r7	'max 0.2a	
L311	3640011	Filt z>600r/100m 0r6	Smax 0.2a	
L312	3640011	Filt z>600r/100m 0r6	Smax 0.2a	
L451	3640035	Filt z>450r/100m 0r7	max 0.2a	
L520	3643023	Chip coil 68 n	5 % Q=40/200 MHz 0805	
L521	3643037	Chip coil 180 n	5 % Q=35/100 MHz 0805	
L522	3643039	Chip coil 220 n	5 % Q=35/100 MHz 0805	
L523	3608326	Chip coil 330 n	5 % Q=33/50 MHz 1206	
L524	3608326	Chip coil 330 n	5 % Q=33/50 MHz 1206	
L543	3643039	Chip coil 220 n	5 % Q=35/100 MHz 0805	
L544	3643039	Chip coil 220 n	5 % Q=35/100 MHz 0805	
L545	3643037	Chip coil 180 n	5 % Q=35/100 MHz 0805	
L551	3643021	Chip coil 47 n	5 % Q=40/200 MHz 0805	
L709	3643023	Chip coil 68 n	5 % Q=40/200 MHz 0805	
L710	3643023	Chip coil 68 n	5 % Q=40/200 MHz 0805	
L711	3643003	Chip coil 12 n	5 % Q=30/250 MHz 0805	
L712	3641262	Ferrite bead 30r/100	mhz 2a	
L800	3641324	Chip coil 10 u	10 % Q=25/2.52 MHz 1008	
L840		•	5 % Q=40/200 MHz 0805	
L841			5 % Q=40/200 MHz 0805	
B150		Crystal 32.768 k		
G800		Vco 1006–1031mhz		
G801		VCTCXO 13.00 M		
Z500		Dupl 890-915/935-9		
Z505		Saw filter 947.5+-12		
Z541	4511026	Saw filter 71+-0.08	M	
Z551		Cer.filt 13+-0.09mhz		
Z714	4510067	Saw filter 902.5+–12.5 M		
V100		Chip varistor vwm18v vc39v		
V200		Transistor BC848B/BCW32 npn 30V 100mA SOT23		
V301			2 % 5.1V 0.3W SOT23	
V302		Transistor BC848B/B		

PAMS NHE-8/9					
Technica	I Documer	ntation		System Module	
V303	4200917	Transistor BC848B/I	BCW32	npn 30V 100mA SOT23	
V304	4210020	Transistor BCP69-2	25	pnp 20V A SOT223	
V305	4115804	Schottky diode	PRLL581		
V306		Transistor BCP69-2		pnp 20V 1A SOT223	
V307	4210050	Transistor DTA114E	E	pnp RBV EM3	
V308	4210052	Transistor DTC114E	E	npn RBV EM3	
V309	4200917	Transistor BC848B/I	BCW32	npn 30V 100 mA SOT23	
V310	4210020	Transistor BCP69-2	25	pnp 20V 1 A SOT223	
V311	4200917	Transistor BC848B/I	BCW32	npn 30V 100 mA SOT23	
V501	4210074	Transistor BFP420	npn 4. V	SOT343	
V505	4219922	Transistor x 2		UM6	
V511	4110083	Schdix4 bat15-099	r ring		
V512	4210011	Transistor BFS505	npn 15 V	18 mA SOT323	
V520	4210066	Transistor BFR93AV	V	npn 12 V 35 mA SOT323	
V580	4219922	Transistor x 2		UM6	
V590	4219922	Transistor x 2		UM6	
V591	4210052	Transistor DTC114E	E	npn RB V EM3	
V592	4112464	Pindix2 bar64-04 2	00v 0.1a	sot23 SOT23	
V602	4210054	Transistor FMMT58	9	pnp 30V 1A SOT23	
V603	4219922	Transistor x 2		UM6	
V604	4210054	Transistor FMMT58	9	pnp 30V 1A SOT23	
V606		Transistor x 2		UM6	
V607		Transistor FMMT58		pnp 30V 1A SOT23	
V608		Transistor BC848B/I		npn 30V 100 mA SOT23	
V711		Transistor x 2	UMX1	npn 40V SOT363	
V712		Transistor x 2	UMT1	pnp 40V SOT363	
V780		Sch. diode x 2			
V790		Transistor x 2		npn 40V SOT363	
V791		MosFet NDS8434		p-ch 20V 6.6A SO8	
V830		Transistor BC848B/I		npn 30V 100mA SOT23	
V840				npn 20V 20V18mA SOT363	
V842		Cap. diode	BB135	30V SOD323	
D150		IC, MCU	TQFP80		
D151		F317345			
D152		IC, tms320lc541 3v			
D400		Te28f008s3 flash 3.			
D402		IC, EEPROM 2kx8	DIL		
D403 D404		IC, SRAM IC, SRAM			
D404 D405		IC, SRAM			
N200		St5090 audio codec			
N300		Stt261c pscld_e pw			
N450		St7523 rfi2 v4.2 tdn			
11700	-010031				

System Module

Technical Documentation

N451	4340139	IC, regulator	TK11245AM	4.5V 180mA SOT23L
N551	4370243	Crfrt_st tx.mod+rxif	+pwc sqfp44	SQFP44
N601	4340081	IC, regulator	TK11248AM	4.8V 180mA SOT23L
N602	4340081	IC, regulator	TK11248AM	4.8V 180mA SOT23L
N603	4340081	IC, regulator	TK11248AM	4.8V 180mA SOT23L
N710	4340077	IC, 1.5ghz w/b 30dl	b/1ghz a uPC2710	T AMP
N711	4350083	IC, pow.amp.	5.5V 4.0V	N
N820	4340147	IC, 2xsynth1.2g/510	Omhz ssop LMX2332	2 SSOP20
X100	5469007	Syst.conn 12af+jac	k+dc dct2	
X101	5460015	SM, conn 2x16m s	pring	
X102	5409033	Sim card reader		
X500	9780172	Antenna cable		
X501	9510262	Antenna clip		
	9854162	PCB GJ3		